One
This content will become publicly available on February 1, 2025
Flux transfer events (FTEs) are a type of magnetospheric phenomena that exhibit distinctive observational signatures from the in situ spacecraft measurements. They are generally believed to possess a magnetic field configuration of a magnetic flux rope and formed through magnetic reconnection at the dayside magnetopause, sometimes accompanied with enhanced plasma convection in the ionosphere. We examine two FTE intervals under the condition of southward interplanetary magnetic field (IMF) with a dawn‐dusk component. We apply the Grad‐Shafranov (GS) reconstruction method to the in situ measurements by the Magnetospheric Multiscale (MMS) spacecraft to derive the magnetic flux contents associated with the FTE flux ropes. In particular, given a cylindrical magnetic flux rope configuration derived from the GS reconstruction, the magnetic flux content can be characterized by both the toroidal (axial) and poloidal fluxes. We then estimate the amount of magnetic flux (i.e., the reconnection flux) encompassed by the area “opened” in the ionosphere, based on the ground‐based Super Dual Auroral Radar Network (SuperDARN) observations. We find that for event 1, the FTE flux rope is oriented in the approximate dawn‐dusk direction, and the amount of its total poloidal magnetic flux falls within the range of the corresponding reconnection flux. For event 2, the FTE flux rope is oriented in the north‐south direction. Both the FTE flux and the reconnection flux have greater uncertainty. We provide a detailed description about a formation scenario of sequential magnetic reconnection between adjacent field lines based on the FTE flux rope configurations from our results.
more » « less- NSF-PAR ID:
- 10506198
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 129
- Issue:
- 2
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract strong magnetic cloud (MC) with a magnetic field magnitude reaching ∼40 nT at 1 au during 2012 June 16–17 is examined in association with a preexisting magnetic flux rope (MFR) identified on the Sun. The MC is characterized by a quasi-three-dimensional (3D) flux rope model based on in situ measurements from the Wind spacecraft. The contents of the magnetic flux and other parameters are quantified. In addition, a correlative study with the corresponding measurements of the same structure crossed by the Venus Express (VEX) spacecraft at a heliocentric distance of 0.7 au and with an angular separation of ∼6° in longitude is performed to validate the MC modeling results. The spatial variation between the Wind and VEX magnetic field measurements is attributed to the 3D configuration of the structure appearing as a knotted bundle of flux. A comparison of the magnetic flux contents between the MC and the preexisting MFR on the Sun indicates that the 3D reconnection process accompanying an M1.9 flare may correspond to the magnetic reconnection between the field lines of the preexisting MFR rooted in the opposite polarity footpoints. Such a process reduces the amount of the axial magnetic flux in the erupted flux rope, by approximately 50%, in this case. -
Abstract Magnetic flux rope, a type of magnetic field structure in space plasmas, has been studied for decades through both observational and theoretical means. We provide a brief report on our recent modeling study of its magnetic field configuration based on in-situ spacecraft measurements, focusing on those made for large-scale flux ropes in the interplanetary space. We illustrate the complexity in its field-line topology by presenting two event studies employing a unique analysis method. In particular, we demonstrate the feasibility and challenges for the approach to use two or more in-situ spacecraft datasets. We discuss the implications of our results and offer some thoughts on further advancing the investigation of the nature of the magnetic flux rope.more » « less
-
Abstract We report an earthward moving ion‐scale flux rope embedded within the trailing edge of a hot flow anomaly (HFA) observed by the Magnetospheric Multiscale satellite constellation on 17 December 2016 upstream of Earth's quasi‐parallel bow shock. The driver of the HFA, a tangential discontinuity, was observed by the Wind spacecraft without flux rope signatures around it in the solar wind. This suggests that the earthward moving flux rope was generated inside the HFA. This ion‐scale flux rope is not a force free structure and expands due to a strong magnetic pressure gradient force. Solar wind ions are decelerated inside the flux rope by the static electric field likely caused by the charge separation of solar wind particles. Our observations imply that magnetic reconnection may have occurred inside the HFA. Reconnection and flux ropes may play a role in particle acceleration/heating inside foreshock transients.
-
Abstract An
LMN coordinate system for magnetic reconnection events is sometimes determined by definingN as the direction of the gradient across the current sheet andL as the direction of maximum variance of the magnetic field. The third direction,M , is often assumed to be the direction of zero gradient, and thus the orientation of the X line. But when there is a guide field, the X line direction may have a significant component in the L direction defined in this way. For a 2D description, a coordinate system describing such an event would preferably be defined using a different coordinate directionM ′ oriented along the X line. Here we use a 3D particle‐in‐cell simulation to show that the X line is oriented approximately along the direction bisecting the asymptotic magnetic field directions on the two sides of the current sheet. We describe two possible ways to determine the orientation of the X line from spacecraft data, one using the minimum gradient direction from Minimum Directional Derivative analysis at distances of the order of the current sheet thickness from the X line, and another using the bisection direction based on the asymptotic magnetic fields outside the current sheet. We discuss conditions for validity of these estimates, and we illustrate these conditions using several Magnetospheric Multiscale (MMS) events. We also show that intersection of a flux rope due to secondary reconnection with the primary X line can destroy invariance along the X line and negate the validity of a two‐dimensional description. -
Abstract Magnetic reconnection plays an important role in converting energy while modifying field topology. This process takes place under varied plasma conditions during which the transport of magnetic flux is intrinsic. Identifying active magnetic reconnection sites with in situ observations is challenging. A new technique, Magnetic Flux Transport (MFT) analysis, has been developed recently and proven in numerical simulation for identifying active reconnection efficiently and accurately. In this study, we examine the MFT process in 37 previously reported electron diffusion region (EDR)/reconnection-line crossing events at the day-side magnetopause and in the magnetotail and turbulent magnetosheath using Magnetospheric Multiscale measurements. The coexisting inward and outward MFT flows at an X-point provides a signature that magnetic field lines become disconnected and reconnected. The application of MFT analysis to in-situ observations demonstrates that MFT can successfully identify active reconnection sites under complex varied conditions, including asymmetric and turbulent upstream conditions. It also provides a higher rate of identification than plasma outflow jets alone. MFT can be applied to in situ measurements from both single- and multi-spacecraft missions and laboratory experiments.