skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hermit: Low-Latency, High-Throughput, and Transparent Remote Memory via Feedback-Directed Asynchrony
Remote memory techniques are gaining traction in datacenters because they can significantly improve memory utilization. A popular approach is to use kernel-level, page-based memory swapping to deliver remote memory as it is transparent, enabling existing applications to benefit without modifications. Unfortunately, current implementations suffer from high software overheads, resulting in significantly worse tail latency and throughput relative to local memory. Hermit is a redesigned swap system that overcomes this limitation through a novel technique called adaptive, feedback-directed asynchrony. It takes non-urgent but time-consuming operations (e.g., swap-out, cgroup charge, I/O deduplication, etc.) off the fault-handling path and executes them asynchronously. Different from prior work such as Fastswap, Hermit collects runtime feedback and uses it to direct how asynchrony should be performed—i.e., whether asynchronous operations should be enabled, the level of asynchrony, and how asynchronous operations should be scheduled. We implemented Hermit in Linux 5.14. An evaluation with a set of latency-critical applications shows that Hermit delivers low-latency remote memory. For example, it reduces the 99th percentile latency of Memcached by 99.7% from 36 ms to 91 µs. Running Hermit over batch applications improves their overall throughput by 1.24× on average. These results are achieved without changing a single line of user code.  more » « less
Award ID(s):
2104398
PAR ID:
10506253
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
USENIX
Date Published:
Journal Name:
20th USENIX Symposium on Networked Systems Design and Implementation (NSDI'23)
ISBN:
978-1-939133-39-7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Remote memory techniques are gaining traction in datacenters because they can significantly improve memory utilization. A popular approach is to use kernel-level, page-based memory swapping to deliver remote memory as it is transparent, enabling existing applications to benefit without modifications. Unfortunately, current implementations suffer from high software overheads, resulting in significantly worse tail latency and throughput relative to local memory. Hermit is a redesigned swap system that overcomes this limitation through a novel technique called adaptive, feedback-directed asynchrony. It takes non-urgent but time-consuming operations (e.g., swap-out, cgroup charge, I/O deduplication, etc.) off the fault-handling path and executes them asynchronously. Different from prior work such as Fastswap, Hermit collects runtime feedback and uses it to direct how asynchrony should be performed—i.e., whether asynchronous operations should be enabled, the level of asynchrony, and how asynchronous operations should be scheduled. We implemented Hermit in Linux 5.14. An evaluation with a set of latency-critical applications shows that Hermit delivers low-latency remote memory. For example, it reduces the 99th percentile latency of Memcached by 99.7% from 36 ms to 91 µs. Running Hermit over batch applications improves their overall throughput by 1.24× on average. These results are achieved without changing a single line of user code. 
    more » « less
  2. We present Memtrade, the first practical marketplace for disaggregated memory clouds. Clouds introduce a set of unique challenges for resource disaggregation across different tenants, including resource harvesting, isolation, and matching. Memtrade allows producer virtual machines (VMs) to lease both their unallocated memory and allocated-but-idle application memory to remote consumer VMs for a limited period of time. Memtrade does not require any modifications to host-level system software or support from the cloud provider. It harvests producer memory using an application-aware control loop to form a distributed transient remote memory pool with minimal performance impact; it employs a broker to match producers with consumers while satisfying performance constraints; and it exposes the matched memory to consumers through different abstractions. As a proof of concept, we propose two such memory access interfaces for Memtrade consumers -- a transient KV cache for specified applications and a swap interface that is application-transparent. Our evaluation using real-world cluster traces shows that Memtrade provides significant performance benefit for consumers (improving average read latency up to 2.8X) while preserving confidentiality and integrity, with little impact on producer applications (degrading performance by less than 2.1%). 
    more » « less
  3. In-memory key-value stores that use kernel-bypass networking serve millions of operations per second per machine with microseconds of latency. They are fast in part because they are simple, but their simple interfaces force applications to move data across the network. This is inefficient for operations that aggregate over large amounts of data, and it causes delays when traversing complex data structures. Ideally, applications could push small functions to storage to avoid round trips and data movement; however, pushing code to these fast systems is challenging. Any extra complexity for interpreting or isolating code cuts into their latency and throughput benefits. We present Splinter, a low-latency key-value store that clients extend by pushing code to it. Splinter is designed for modern multi-tenant data centers; it allows mutually distrusting tenants to write their own fine-grained extensions and push them to the store at runtime. The core of Splinter’s design relies on type- and memory-safe extension code to avoid conventional hardware isolation costs. This still allows for bare-metal execution, avoids data copying across trust boundaries, and makes granular storage functions that perform less than a microsecond of compute practical. Our measurements show that Splinter can process 3.5 million remote extension invocations per second with a median round-trip latency of less than 9 μs at densities of more than 1,000 tenants per server. We provide an implementation of Facebook’s TAO as an 800 line extension that, when pushed to a Splinter server, improves performance by 400 Kop/s to perform 3.2 Mop/s over online graph data with 30 μs remote access times. 
    more » « less
  4. null (Ed.)
    The performance of persistent applications is severely hurt by current secure processor architectures. Persistent applications use long-latency flush instructions and memory fences to make sure that writes to persistent data reach the persistency domain in a way that is crash consistent. Recently introduced features like Intel's Asynchronous DRAM Refresh (ADR) make the on-chip Write Pending Queue (WPQ) part of the persistency domain and help reduce the penalty of persisting data since data only needs to reach the on-chip WPQ to be considered persistent. However, when persistent applications run on secure processors, for the sake of securing memory many cycles are added to the critical path of their write operations before they ever reach the persistent WPQ, preventing them from fully exploiting the performance advantages of the persistent WPQ. Our goal in this work is to make it feasible for secure persistent applications to benefit more from the on-chip persistency domain. We propose Dolos, an architecture that prioritizes persisting data without sacrificing security in order to gain a significant performance boost for persistent applications. Dolos achieves this goal by an additional minor security unit, Mi-SU, that utilizes a much faster secure process that protects only the WPQ. Thus, the secure operation latency in the critical path of persist operations is reduced and hence persistent transactions can complete earlier. Dolos retains a conventional major security unit for protecting memory that occurs off the critical path after inserting secured data into the WPQ. To evaluate our design, we implemented our architecture in the GEM5 simulator and analyzed the performance of 6 benchmarks from the WHISPER suite. Dolos improves their performance by 1.66x on average. 
    more » « less
  5. As network, I/O, accelerator, and NVM devices capable of a million operations per second make their way into data centers, the software stack managing such devices has been shifting from implementations within the operating system kernel to more specialized kernel-bypass approaches. While the in-kernel approach guarantees safety and provides resource multiplexing, it imposes too much overhead on microsecond-scale tasks. Kernel-bypass approaches improve throughput substantially but sacrifice safety and complicate resource management: if applications are mutually distrusting, then either each application must have exclusive access to its own device or else the device itself must implement resource management. This paper shows how to attain both safety and performance via intra-process isolation for data plane libraries. We propose protected libraries as a new OS abstraction which provides separate user-level protection domains for different services (e.g., network and in-memory database), with performance approaching that of unprotected kernel bypass. We also show how this new feature can be utilized to enable sharing of data plane libraries across distrusting applications. Our proposed solution uses Intel's memory protection keys (PKU) in a safe way to change the permissions associated with subsets of a single address space. In addition, it uses hardware watch-points to delay asynchronous event delivery and to guarantee independent failure of applications sharing a protected library. We show that our approach can efficiently protect high-throughput in-memory databases and user-space network stacks. Our implementation allows up to 2.3 million library entrances per second per core, outperforming both kernellevel protection and two alternative implementations that use system calls and Intel's VMFUNC switching of user-level address spaces, respectively. 
    more » « less