Current deep-learning techniques for processing sets are limited to a fixed cardinality, causing a steep increase in computational complexity when the set is large. To address this, we have taken techniques used to model long-term dependencies from natural language processing and combined them with the permutation equivariant architecture, Set Transformer (STr). The result is Set Transformer XL (STrXL), a novel deep learning model capable of extending to sets of arbitrary cardinality given fixed computing resources. STrXL's extension capability lies in its recurrent architecture. Rather than processing the entire set at once, STrXL processes only a portion of the set at a time and uses a memory mechanism to provide additional input from the past. STrXL is particularly applicable to processing sets of high-throughput sequencing (HTS) samples of DNA sequences as their set sizes can range into hundreds of thousands. When tasked with classifying HTS prairie soil samples and MNIST digits, results show that STrXL exhibits an expected memory size-accuracy trade-off that scales proportionally with the complexity of downstream tasks, but, unlike STr, is capable of generalizing to sets of arbitrary cardinality.
more »
« less
STrXL: Approximating Permutation Invariance/Equivariance to Model Arbitrary Cardinality Sets
Current deep-learning techniques for processing sets are limited to a fixed cardinality, causing a steep increase in computational complexity when the set is large. To address this, we have taken techniques used to model long-term dependencies from natural language processing and combined them with the permutation equivariant architecture, Set Transformer (STr). The result is Set Transformer XL (STrXL), a novel deep learning model capable of extending to sets of arbitrary cardinality given fixed computing resources. STrXL’s extension capability lies in its recurrent architecture. Rather than processing the entire set at once, STrXL processes only a portion of the set at a time and uses a memory mechanism to provide additional input from the past. STrXL is particularly applicable to processing sets of highthroughput sequencing (HTS) samples of DNA sequences as their set sizes can range into hundreds of thousands. When tasked with classifying HTS prairie soil samples and MNIST digits, results show that STrXL exhibits an expected memory size-accuracy trade-off that scales proportionally with the complexity of downstream tasks, but, unlike STr, is capable of generalizing to sets of arbitrary cardinality.
more »
« less
- Award ID(s):
- 1757493
- PAR ID:
- 10506371
- Publisher / Repository:
- Florida Online Journals - The Library Press at the University of Florida
- Date Published:
- ISSN:
- 2334-0762
- Format(s):
- Medium: X
- Location:
- Miramar Beach, FL
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
High-throughput sequencing (HTS) is a modern DNA sequencing technology used to rapidly read thousands of genomic fragments from microorganisms given a sample. The large amount of data produced by this process makes deep learning, whose performance often scales with dataset size, a suitable fit for processing HTS samples. While deep learning models have utilized sets of DNA sequences to make informed predictions, to our knowledge, there are no models in the current literature capable of generating synthetic HTS samples, a tool which could enable experimenters to predict HTS samples given some environmental parameters. Furthermore, the unordered nature of HTS samples poses a challenge to nearly all deep learning architectures because they have an inherent dependence on input order. To address this gap in the literature, we introduce DNA Generative Adversarial Set Transformer (DNAGAST), the first model capable of generating synthetic HTS samples.We qualitatively and quantitatively demonstrate DNAGAST’s ability to produce realistic synthetic samples and explore various methods to mitigate mode-collapse. Additionally, we propose novel quantitative diversity metrics to measure the effects of mode-collapse for unstructured set-based data.more » « less
-
Set function learning has emerged as a crucial area in machine learning, addressing the challenge of modeling functions that take sets as inputs. Unlike traditional machine learning that involves fixed-size input vectors where the order of features matters, set function learning demands methods that are invariant to permutations of the input set, presenting a unique and complex problem. This survey provides a comprehensive overview of the current development in set function learning, covering foundational theories, key methodologies, and diverse applications. We categorize and discuss existing approaches, focusing on deep learning approaches, such as DeepSets and Set Transformer-based methods, as well as other notable alternative methods beyond deep learning, offering a complete view of current models. We also introduce various applications and relevant datasets, such as point cloud processing and multi-label classification, highlighting the significant progress achieved by set function learning methods in these domains. Finally, we conclude by summarizing the current state of set function learning approaches and identifying promising future research directions, aiming to guide and inspire further advancements in this promising field.more » « less
-
Sketches are single-pass small-space data summaries that can quickly estimate the cardinality of join queries. However, sketches are not directly applicable to join queries with dynamic filter conditions --- where arbitrary selection predicate(s) are applied --- since a sketch is limited to a fixed selection. While multiple sketches for various selections can be used in combination, they each incur individual storage and maintenance costs. Alternatively, exact sketches can be built during runtime for every selection. To make this process scale, a high-degree of parallelism --- available in hardware accelerators such as GPUs --- is required. Therefore, sketch usage for cardinality estimation in query optimization is limited. Following recent work that applies transformers to cardinality estimation, we design a novel learning-based method to approximate the sketch of any arbitrary selection, enabling sketches for join queries with filter conditions. We train a transformer on each table to estimate the sketch of any subset of the table, i.e., any arbitrary selection. Transformers achieve this by learning the joint distribution amongst table attributes, which is equivalent to a multidimensional sketch. Subsequently, transformers can approximate any sketch, enabling sketches for join cardinality estimation. In turn, estimating joins via approximate sketches allows tables to be modeled individually and thus scales linearly with the number of tables. We evaluate the accuracy and efficacy of approximate sketches on queries with selection predicates consisting of conjunctions of point and range conditions. Approximate sketches achieve similar accuracy to exact sketches with at least one order of magnitude less overhead.more » « less
-
The human ability to generalize beyond interpolation, often called extrapolation or symbol-binding, is challenging to recreate with computational models. Biologically plausible models incorporating indirection mechanisms have demonstrated strong performance in this regard. Deep learning approaches such as Long Short-Term Memory (LSTM) and Transformers have shown varying degrees of success, but recent work has suggested that Transformers are capable of extrapolation as well. We evaluate the capabilities of the above approaches on a series of increasingly complex sentence-processing tasks to infer the capacity of each individual architecture to extrapolate sentential roles across novel word fillers. We confirm that the Transformer does possess superior abstraction capabilities compared to LSTM. However, what it does not possess is extrapolation capabilities, as evidenced by clear performance disparities on novel filler tasks as compared to working memory-based indirection models.more » « less
An official website of the United States government

