We study the structure of the Liouville quantum gravity (LQG) surfaces that are cut out as one explores a conformal loop-ensemble
Massive historical newspaper collections contain rich information about the historical development of social issues and constitute a unique resource for studying the social construction of issues such as juvenile delinquency. However, manual analysis of millions of pages of newspaper articles is infeasible. In this paper, we propose a suite of computational methods, including cross-context lexical analysis, dynamic semantic analysis, and valence analysis, to facilitate the study of historical social construction. We apply these methods to ProQuest Historical Newspapers
- PAR ID:
- 10506412
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Journal of Computational Social Science
- Volume:
- 7
- Issue:
- 2
- ISSN:
- 2432-2717
- Format(s):
- Medium: X Size: p. 1095-1137
- Size(s):
- p. 1095-1137
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract for$$\hbox {CLE}_{\kappa '}$$ in (4, 8) that is drawn on an independent$$\kappa '$$ -LQG surface for$$\gamma $$ . The results are similar in flavor to the ones from our companion paper dealing with$$\gamma ^2=16/\kappa '$$ for$$\hbox {CLE}_{\kappa }$$ in (8/3, 4), where the loops of the CLE are disjoint and simple. In particular, we encode the combined structure of the LQG surface and the$$\kappa $$ in terms of stable growth-fragmentation trees or their variants, which also appear in the asymptotic study of peeling processes on decorated planar maps. This has consequences for questions that do a priori not involve LQG surfaces: In our paper entitled “$$\hbox {CLE}_{\kappa '}$$ CLE Percolations ” described the law of interfaces obtained when coloring the loops of a independently into two colors with respective probabilities$$\hbox {CLE}_{\kappa '}$$ p and . This description was complete up to one missing parameter$$1-p$$ . The results of the present paper about CLE on LQG allow us to determine its value in terms of$$\rho $$ p and . It shows in particular that$$\kappa '$$ and$$\hbox {CLE}_{\kappa '}$$ are related via a continuum analog of the Edwards-Sokal coupling between$$\hbox {CLE}_{16/\kappa '}$$ percolation and the$$\hbox {FK}_q$$ q -state Potts model (which makes sense even for non-integerq between 1 and 4) if and only if . This provides further evidence for the long-standing belief that$$q=4\cos ^2(4\pi / \kappa ')$$ and$$\hbox {CLE}_{\kappa '}$$ represent the scaling limits of$$\hbox {CLE}_{16/\kappa '}$$ percolation and the$$\hbox {FK}_q$$ q -Potts model whenq and are related in this way. Another consequence of the formula for$$\kappa '$$ is the value of half-plane arm exponents for such divide-and-color models (a.k.a. fuzzy Potts models) that turn out to take a somewhat different form than the usual critical exponents for two-dimensional models.$$\rho (p,\kappa ')$$ -
Abstract We study the production of
meson in$$D^0$$ p +p andp -Pb collisions using the improved AMPT model considering both coalescence and independent fragmentation of charm quarks after the Cronin broadening is included. After a detailed discussion of the improvements implemented in the AMPT model for heavy quark production, we show that the modified AMPT model can provide a good description of meson spectra in$$D^0$$ p -Pb collisions, the data at different centralities and$$Q_{\textrm{pPb}}$$ data in both mid- and forward (backward) rapidities. We also studied the effects of nuclear shadowing and parton cascade on the rapidity dependence of$$R_{\textrm{pPb}}$$ meson production and$$D^{0}$$ . Our results indicate that using the same strength of the Cronin effect (i.e$$R_{\textrm{pPb}}$$ value) as that obtained from the mid-rapidity data leads to a considerable overestimation of the$$\delta $$ meson spectra and$$D^0$$ data at high$$R_{\textrm{pPb}}$$ in the backward rapidity. As a result, the$$p_{\textrm{T}}$$ is determined via a$$\delta $$ fitting of the$$\chi ^2$$ data across various rapidities. This work lays the foundation for a better understanding of cold-nuclear-matter (CNM) effects in relativistic heavy-ion collisions.$$R_{\textrm{pPb}}$$ -
Abstract A search is reported for charge-parity
violation in$$CP$$ decays, using data collected in proton–proton collisions at$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} $$ recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6$$\sqrt{s} = 13\,\text {Te}\hspace{-.08em}\text {V} $$ , which consists of about 10 billion events containing a pair of b hadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays$$\,\text {fb}^{-1}$$ and$${{{\textrm{D}}}^{{*+}}} \rightarrow {{{\textrm{D}}}^{{0}}} {{{\mathrm{\uppi }}}^{{+}}} $$ . The$${{{\textrm{D}}}^{{*-}}} \rightarrow {\overline{{\textrm{D}}}^{{0}}} {{{\mathrm{\uppi }}}^{{-}}} $$ asymmetry in$$CP$$ is measured to be$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} $$ , where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the$$A_{CP} ({{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} ) = (6.2 \pm 3.0 \pm 0.2 \pm 0.8)\%$$ asymmetry in the$$CP$$ decay. This is the first$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{{\mathrm{\uppi }}}^{{+}}} {{{\mathrm{\uppi }}}^{{-}}} $$ asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state.$$CP$$ -
Abstract The elliptic flow
of$$(v_2)$$ mesons from beauty-hadron decays (non-prompt$${\textrm{D}}^{0}$$ was measured in midcentral (30–50%) Pb–Pb collisions at a centre-of-mass energy per nucleon pair$${\textrm{D}}^{0})$$ TeV with the ALICE detector at the LHC. The$$\sqrt{s_{\textrm{NN}}} = 5.02$$ mesons were reconstructed at midrapidity$${\textrm{D}}^{0}$$ from their hadronic decay$$(|y|<0.8)$$ , in the transverse momentum interval$$\mathrm {D^0 \rightarrow K^-\uppi ^+}$$ GeV/$$2< p_{\textrm{T}} < 12$$ c . The result indicates a positive for non-prompt$$v_2$$ mesons with a significance of 2.7$${{\textrm{D}}^{0}}$$ . The non-prompt$$\sigma $$ -meson$${{\textrm{D}}^{0}}$$ is lower than that of prompt non-strange D mesons with 3.2$$v_2$$ significance in$$\sigma $$ , and compatible with the$$2< p_\textrm{T} < 8~\textrm{GeV}/c$$ of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties.$$v_2$$ -
Abstract Aria is a plant hosting a
cryogenic isotopic distillation column, the tallest ever built, which is being installed in a mine shaft at Carbosulcis S.p.A., Nuraxi-Figus (SU), Italy. Aria is one of the pillars of the argon dark-matter search experimental program, lead by the Global Argon Dark Matter Collaboration. It was designed to reduce the isotopic abundance of$${350}\,\hbox {m}$$ in argon extracted from underground sources, called Underground Argon (UAr), which is used for dark-matter searches. Indeed,$${^{39}\hbox {Ar}}$$ is a$${^{39}\hbox {Ar}}$$ -emitter of cosmogenic origin, whose activity poses background and pile-up concerns in the detectors. In this paper, we discuss the requirements, design, construction, tests, and projected performance of the plant for the isotopic cryogenic distillation of argon. We also present the successful results of the isotopic cryogenic distillation of nitrogen with a prototype plant.$$\beta $$