Li, R; Chowdhury, K
(Ed.)
Federated Learning (FL) enables model training across decentralized clients while preserving data privacy. However, bandwidth constraints limit the volume of information exchanged, making communication efficiency a critical challenge. In addition, non- IID data distributions require fairness-aware mechanisms to prevent performance degradation for certain clients. Existing sparsification techniques often apply fixed compression ratios uniformly, ignoring variations in client importance and bandwidth. We propose FedBand, a dynamic bandwidth allocation framework that prioritizes clients based on their contribution to the global model. Unlike conventional approaches, FedBand does not enforce uniform client participation in every communication round. Instead, it allocates more bandwidth to clients whose local updates deviate significantly from the global model, enabling them to transmit a greater number of parameters. Clients with less impactful updates contribute proportionally less or may defer transmission, reducing unnecessary overhead while maintaining generalizability. By optimizing the trade-off between communication efficiency and learning performance, FedBand substantially reduces transmission costs while preserving model accuracy. Experiments on non-IID CIFAR-10 and UTMobileNet2021 datasets, demonstrate that FedBand achieves up to 99.81% bandwidth savings per round while maintaining accuracies close to that of an unsparsified model (80% on CIFAR- 10, 95% on UTMobileNet), despite transmitting less than 1% of the model parameters in each round. Moreover, FedBand accelerates convergence by 37.4%, further improving learning efficiency under bandwidth constraints. Mininet emulations further show a 42.6% reduction in communication costs and a 65.57% acceleration in convergence compared to baseline methods, validating its real-world efficiency. These results demonstrate that adaptive bandwidth allocation can significantly enhance the scalability and communication efficiency of federated learning, making it more viable for real- world, bandwidth-constrained networking environments.
more »
« less
An official website of the United States government

