Elastic constants of splay K_11, twist K_22, and bend K_33 of nematic liquid crystals are often assumed to be equal to each other in order to simplify the theoretical description of complex director fields. Here we present examples of how the disparity of K_11 and K_33 produces effects that cannot be described in a one-constant approximation. In a lyotropic chromonic liquid crystal, nematic droplets coexisting with the isotropic phase change their shape from a simply-connected tactoid to a topologically distinct toroid as a result of temperature or concentration variation. The transformation is caused by the increase of the splay-to-bend ratio K_11/K_33. A phase transition from a conventional nematic to a twist-bend nematic implies that the ratio K_11/K_33 changes from very large to very small. As a result, the defects caused by an externally applied electric field change the deformation mode of optic axis from bend to splay. In the paraelectric-ferroelectric nematic transition, one finds an inverse situation: K_11/K_33 changes from small to large, which shapes the domain walls in the spontaneous electric polarization field as conic sections. The polarization field tends to be solenoidal, or divergence-free, a behavior complementary to irrotational curl-free director textures of a smectic A.
more »
« less
Topological transformations of a nematic drop
Morphogenesis of living systems involves topological shape transformations which are highly unusual in the inanimate world. Here, we demonstrate that a droplet of a nematic liquid crystal changes its equilibrium shape from a simply connected tactoid, which is topologically equivalent to a sphere, to a torus, which is not simply connected. The topological shape transformation is caused by the interplay of nematic elastic constants, which facilitates splay and bend of molecular orientations in tactoids but hinders splay in the toroids. The elastic anisotropy mechanism might be helpful in understanding topology transformations in morphogenesis and paves the way to control and transform shapes of droplets of liquid crystals and related soft materials.
more »
« less
- PAR ID:
- 10506440
- Publisher / Repository:
- American Association for the Advancement of Science
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 9
- Issue:
- 27
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the collective elastic behavior of semiflexible polymer solutions in a nematic liquid-crystalline state using polymer field theory. Our polymer field-theoretic model of semiflexible polymer solutions is extended to include second-order fluctuation corrections to the free energy, permitting the evaluation of the Frank elastic constants based on orientational order fluctuations in the nematic state. Our exact treatment of wormlike chain statistics permits the evaluation of behavior from the nematic state, thus accurately capturing the impact of single-chain behavior on collective elastic response. Results for the Frank elastic constants are presented as a function of aligning field strength and chain length, and we explore the impact of conformation fluctuations and hairpin defects on the twist, splay, and bend moduli. Our results indicate that the twist elastic constant Ktwist is smaller than both bend and splay constants (Kbend and Ksplay, respectively) for the entire range of polymer rigidity. Splay and bend elastic constants exhibit regimes of dominance over the range of chain stiffness, where Ksplay > Kbend for flexible polymers (large-N limit) while the opposite is true for rigid polymers. Theoretical analysis also suggests the splay modulus tracks exactly to that of the end-to-end distance in the transverse direction for semiflexible polymers at intermediate to large-N. These results provide insight into the role of conformation fluctuations and hairpin defects on the collective response of polymer solutions.more » « less
-
Topological defects are a ubiquitous phenomenon across different physical systems. A better understanding of defects can be helpful in elucidating the physical behaviors of many real materials systems. In nematic liquid crystals, defects exhibit unique optical signatures and can segregate impurities, showing their promise as molecular carriers and nano-reactors. Continuum theory and simulations have been successfully applied to link static and dynamical behaviors of topological defects to the material constants of the underlying nematic. However, further evidence and molecular details are still lacking. Here we perform molecular dynamics simulations of Gay–Berne particles, a model nematic, to examine the molecular structures and dynamics of +1/2 defects in a thin-film nematic. Specifically, we measure the bend-to-splay ratio K 3 / K 1 using two independent, indirect measurements, showing good agreement. Next, we study the annihilation event of a pair of ±1/2 defects, of which the trajectories are consistent with experiments and hydrodynamic simulations. We further examine the thermodynamics of defect annihilation in an NVE ensemble, leading us to correctly estimate the elastic modulus by using the energy conservation law. Finally, we explore effects of defect annihilation in regions of nonuniform temperature within these coarse-grained molecular models which cannot be analysed by existing continuum level simulations. We find that +1/2 defects tend to move toward hotter areas and their change of speed in a temperature gradient can be quantitatively understood through a term derived from the temperature dependence of the elastic modulus. As such, our work has provided molecular insights into structures and dynamics of topological defects, presented unique and accessible methods to measure elastic constants by inspecting defects, and proposed an alternative control parameter of defects using temperature gradient.more » « less
-
null (Ed.)Active materials are capable of converting free energy into directional motion, giving rise to notable dynamical phenomena. Developing a general understanding of their structure in relation to the underlying nonequilibrium physics would provide a route toward control of their dynamic behavior and pave the way for potential applications. The active system considered here consists of a quasi–two-dimensional sheet of short (≈1 μm) actin filaments driven by myosin II motors. By adopting a concerted theoretical and experimental strategy, new insights are gained into the nonequilibrium properties of active nematics over a wide range of internal activity levels. In particular, it is shown that topological defect interactions can be led to transition from attractive to repulsive as a function of initial defect separation and relative orientation. Furthermore, by examining the +1/2 defect morphology as a function of activity, we found that the apparent elastic properties of the system (the ratio of bend-to-splay elastic moduli) are altered considerably by increased activity, leading to an effectively lower bend elasticity. At high levels of activity, the topological defects that decorate the material exhibit a liquid-like structure and adopt preferred orientations depending on their topological charge. Together, these results suggest that it should be possible to tune internal stresses in active nematic systems with the goal of designing out-of-equilibrium structures with engineered dynamic responses.more » « less
-
Topological line defects are ubiquitous in nature and appear at all physical scales, including in condensed matter systems, nuclear physics, and cosmology. Particularly useful systems to study line defects are nematic liquid crystals (LCs), where they describe singular or nonsingular frustrations in orientational order and are referred to as disclinations. In nematic LCs, line defects could be relatively simply created, manipulated, and observed. We consider cases where disclinations are stabilized either topologically in plane-parallel confinements or by chirality. In the former case, we report on studies in which defect core transformations are investigated, the intriguing dynamics of strength disclinations in LCs exhibiting negative dielectric anisotropy, and stabilization and manipulation of assemblies of defects. For the case of chiral nematics, we consider nanoparticle-driven stabilization of defect lattices. The resulting line defect assemblies could pave the way to several applications in photonics, sensitive detectors, and information storage devices. These excitations, moreover, have numerous analogs in other branches of physics. Studying their universal properties in nematics could deepen understanding of several phenomena, which are still unresolved at the fundamental level.more » « less