skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Appraising the Potential Uses and Harms of LLMs for Medical Systematic Reviews
Medical systematic reviews play a vital role in healthcare decision making and policy. However, their production is time-consuming, limiting the availability of high-quality and up-to-date evidence summaries. Recent advancements in LLMs offer the potential to automatically generate literature reviews on demand, addressing this issue. However, LLMs sometimes generate inaccurate (and potentially misleading) texts by hallucination or omission. In healthcare, this can make LLMs unusable at best and dangerous at worst. We conducted 16 interviews with international systematic review experts to characterize the perceived utility and risks of LLMs in the specific context of medical evidence reviews. Experts indicated that LLMs can assist in the writing process by drafting summaries, generating templates, distilling information, and crosschecking information. They also raised concerns regarding confidently composed but inaccurate LLM outputs and other potential downstream harms, including decreased accountability and proliferation of low-quality reviews. Informed by this qualitative analysis, we identify criteria for rigorous evaluation of biomedical LLMs aligned with domain expert views.  more » « less
Award ID(s):
2211954
PAR ID:
10506520
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Association for Computational Linguistics
Date Published:
Journal Name:
Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP)
Page Range / eLocation ID:
10122 to 10139
Format(s):
Medium: X
Location:
Singapore
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent advances in large language models (LLMs) have demonstrated remarkable successes in zero- and few-shot performance on various downstream tasks, paving the way for applications in high-stakes domains. In this study, we systematically examine the capabilities and limitations of LLMs, specifically GPT-3.5 and ChatGPT, in performing zero-shot medical evidence summarization across six clinical domains. We conduct both automatic and human evaluations, covering several dimensions of summary quality. Our study demonstrates that automatic metrics often do not strongly correlate with the quality of summaries. Furthermore, informed by our human evaluations, we define a terminology of error types for medical evidence summarization. Our findings reveal that LLMs could be susceptible to generating factually inconsistent summaries and making overly convincing or uncertain statements, leading to potential harm due to misinformation. Moreover, we find that models struggle to identify the salient information and are more error-prone when summarizing over longer textual contexts. 
    more » « less
  2. Feldman, Anna; Da San Martino, Giovanni; Leberknight, Chris; Nakov, Preslav (Ed.)
    The explosion of online health news articles runs the risk of the proliferation of low-quality information. Within the existing work on fact-checking, however, relatively little attention has been paid to medical news. We present a health news classification task to determine whether medical news articles satisfy a set of review criteria deemed important by medical experts and health care journalists. We present a dataset of 1,119 health news paired with systematic reviews. The review criteria consist of six elements that are essential to the accuracy of medical news. We then present experiments comparing the classical token-based approach with the more recent transformer-based models. Our results show that detecting qualitative lapses is a challenging task with direct ramifications in misinformation, but is an important direction to pursue beyond assigning True or False labels to short claims. 
    more » « less
  3. Thematic Analysis (TA) is a fundamental method in healthcare research for analyzing transcript data, but it is resource-intensive and difficult to scale for large, complex datasets. This study investigates the potential of large language models (LLMs) to augment the inductive TA process in high-stakes healthcare settings. Focusing on interview transcripts from parents of children with Anomalous Aortic Origin of a Coronary Artery (AAOCA), a rare congenital heart disease, we propose an LLM-Enhanced Thematic Analysis (LLM-TA) pipeline. Our pipeline integrates an affordable state-of-the-art LLM (GPT-4o mini), LangChain, and prompt engineering with chunking techniques to analyze nine detailed transcripts following the inductive TA framework. We evaluate the LLM-generated themes against human-generated results using thematic similarity metrics, LLM-assisted assessments, and expert reviews. Results demonstrate that our pipeline outperforms existing LLM-assisted TA methods significantly. While the pipeline alone has not yet reached human-level quality in inductive TA, it shows great potential to improve scalability, efficiency, and accuracy while reducing analyst workload when working collaboratively with domain experts. We provide practical recommendations for incorporating LLMs into high-stakes TA workflows and emphasize the importance of close collaboration with domain experts to address challenges related to real-world applicability and dataset complexity. 
    more » « less
  4. The paper explores the performance of LLMs in the context of multi-dimensional analytic writing assessments, i.e. their ability to provide both scores and comments based on multiple assessment criteria. Using a corpus of literature reviews written by L2 graduate students and assessed by human experts against 9 analytic criteria, we prompt several popular LLMs to perform the same task under various conditions. To evaluate the quality of feedback comments, we apply a novel feedback comment quality evaluation framework. This framework is interpretable, cost-efficient, scalable, and reproducible, compared to existing methods that rely on manual judgments. We find that LLMs can generate reasonably good and generally reliable multi-dimensional analytic assessments. We release our corpus and code\footnote{\url{https://github.com/jaaack-wang/multi-dimensional-analytic-writing-assessments}.} for reproducibility. 
    more » « less
  5. Generating a high-quality explainable summary of a multi-review corpus can help people save time in reading the reviews. With natural language processing and text clustering, people can generate both abstractive and extractive summaries on a corpus containing up to 967 product reviews (Moody et al. 2022). However, the overall quality of the summaries needs further improvement. Noticing that online reviews in the corpus come from a diverse population, we take an approach of removing irrelevant human factors through pre-processing. Apply available pre-trained models together with reference based and reference free metrics, we filter out noise in each review automatically prior to summary generation. Our computational experiments evident that one may significantly improve the overall quality of an explainable summary from such a pre-processed corpus than from the original one. It is suggested of applying available high-quality pre-trained tools to filter noises rather than start from scratch. Although this work is on the specific multi-review corpus, the methods and conclusions should be helpful for generating summaries for other multi-review corpora. 
    more » « less