skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparing MICADAS Gas Source, Direct Carbonate, and Standard Graphite 14C Determinations of Biogenic Carbonate
Abstract Northern Arizona University, Flagstaff, Arizona, USA, recently installed a MIni CArbon DAting System (MICADAS) with a gas interface system (GIS) for determining the14C content of CO2gas released by the acid dissolution of biogenic carbonates. We compare 48 paired graphite, GIS, and direct carbonate14C determinations of individual mollusk shells and echinoid tests. GIS sample sizes ranged between 0.5 and 1.5 mg and span 0.1 to 45.1 ka BP (n = 42). A reduced major axis regression shows a strong relationship between GIS and graphite percent Modern Carbon (pMC) values (m = 1.011; 95% CI [0.997–1.023], R2= 0.999) that is superior to the relationship between the direct carbonate and graphite values (m = 0.978; 95% CI [0.959-0.999], R2= 0.997). Sixty percent of GIS pMC values are within ±0.5 pMC of their graphite counterparts, compared to 26% of direct carbonate pMC values. The precision of GIS analyses is approximately ±7014C yrs to 6.5 ka BP and decreases to approximately ±13014C yrs at 12.5 ka BP. This precision is on par with direct carbonate and is approximately five times larger than for graphite. Six Plio-Pleistocene mollusk and echinoid samples yield finite ages when analyzed as direct carbonate but yield non-finite ages when analyzed as graphite or as GIS. Our results show that GIS14C dating of biogenic carbonates is preferable to direct carbonate14C dating and is an efficient alternative to standard graphite14C dating when the precision of graphite14C dating is not required.  more » « less
Award ID(s):
2041667 2127623 2127644
PAR ID:
10506563
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Radiocarbon
Volume:
66
Issue:
2
ISSN:
0033-8222
Page Range / eLocation ID:
295 to 305
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT The direct carbonate procedure for accelerator mass spectrometry radiocarbon (AMS 14 C) dating of submilligram samples of biogenic carbonate without graphitization is becoming widely used in a variety of studies. We compare the results of 153 paired direct carbonate and standard graphite 14 C determinations on single specimens of an assortment of biogenic carbonates. A reduced major axis regression shows a strong relationship between direct carbonate and graphite percent Modern Carbon (pMC) values (m = 0.996; 95% CI [0.991–1.001]). An analysis of differences and a 95% confidence interval on pMC values reveals that there is no significant difference between direct carbonate and graphite pMC values for 76% of analyzed specimens, although variation in direct carbonate pMC is underestimated. The difference between the two methods is typically within 2 pMC, with 61% of direct carbonate pMC measurements being higher than their paired graphite counterpart. Of the 36 specimens that did yield significant differences, all but three missed the 95% significance threshold by 1.2 pMC or less. These results show that direct carbonate 14 C dating of biogenic carbonates is a cost-effective and efficient complement to standard graphite 14 C dating. 
    more » « less
  2. Abstract It is increasingly important to document past records of hydrologic change in areas that are drought‐prone to better predict the region's future vulnerability to recharge and water supply. Holocene spring‐associated carbonate deposits serve as terrestrial records of water balance that can complement other local, high‐resolution proxies that are moisture‐sensitive. Here we examine two carbonate deposits (one inactive perched tufa site and one active fluvial tufa site) that form from ambient‐temperature freshwater springs, as proxies of their depositional conditions. Radiocarbon (14C) analyses of charcoal fragments from the inactive perched tufa record depositional ages of 6.2 ± 0.06 (2σ) cal kabpand 8.0 ± 0.04 (2σ) cal kabpand agree with the age models from other proxies of past pluvial periods in the region (~16 to 5 ka). The active fluvial tufas date to 853 ± 0.4 calbp,representing conditions similar to modern flow. Geomorphologic and radiocarbon results indicate the perched tufa reflects wetter conditions fed by a higher water table. Stable isotopic analyses of carbonate (δ13C, δ18O) reveal distinct isotopic values between modern and early–mid‐Holocene tufa. This work underscores potential for the analysis of other moisture‐sensitive tufa deposits in coastal central California. 
    more » « less
  3. Abstract Understanding the properties of time averaging (age mixing) in a stratigraphic layer is essential for properly interpreting the paleofauna preserved in the geologic record. This work assesses the age and quantifies the scale and structure of time averaging of land snail-rich colluvial sediments from the Madeira Archipelago (Portugal) by dating individual shells using amino acid racemization calibrated with graphite-target and carbonate-target accelerator mass spectrometry radiocarbon methods. Gastropod shells of Actinella nitidiuscula were collected from seven sites on the volcanic islands of Bugio and Deserta Grande (Desertas Islands), where snail shells are abundant and well preserved in Quaternary colluvial deposits. Results show that the shells ranged in age from modern to ~48 cal ka BP (calibrated radiocarbon age), covering the last glacial and present interglacial periods. Snail shells retrieved from two of the colluvial sites exhibit multimillennial age mixing (>6 ka), which significantly exceeds the analytical error from dating methods and calibration. The observed multimillennial mixing of these assemblages should be taking into consideration in upcoming paleoenvironmental and paleoecological studies in the region. The extent of age mixing may also inform about the time span of colluvial deposition, which can be useful in future geomorphological studies. In addition, this study presents the first carbonate-target radiocarbon results for land snail shells and suggests that this novel, rapid, and more affordable dating method offers reliable age estimates for small land snail shells younger than ~20 cal ka BP. 
    more » « less
  4. null (Ed.)
    Groundwater is an important source of drinking and irrigation water. Dating groundwater informs its vulnerability to contamination and aids in calibrating flow models. Here, we report measurements of multiple age tracers ( 14 C, 3 H, 39 Ar, and 85 Kr) and parameters relevant to dissolved inorganic carbon (DIC) from 17 wells in California’s San Joaquin Valley (SJV), an agricultural region that is heavily reliant on groundwater. We find evidence for a major mid-20th century shift in groundwater DIC input from mostly closed- to mostly open-system carbonate dissolution, which we suggest is driven by input of anthropogenic carbonate soil amendments. Crucially, enhanced open-system dissolution, in which DIC equilibrates with soil CO 2 , fundamentally affects the initial 14 C activity of recently recharged groundwater. Conventional 14 C dating of deeper SJV groundwater, assuming an open system, substantially overestimates residence time and thereby underestimates susceptibility to modern contamination. Because carbonate soil amendments are ubiquitous, other groundwater-reliant agricultural regions may be similarly affected. 
    more » « less
  5. null (Ed.)
    Abstract Carbonate lacustrine strata in nonmarine systems hold great potential for refining depositional ages through U-Pb dating of detrital zircons. The low clastic sediment flux in carbonate depositional environments may increase the relative proportion of zircons deposited by volcanic air fall, potentially increasing the chances of observing detrital ages near the true depositional age. We present U-Pb geochronology of detrital zircons from lacustrine carbonate strata that provides proof of concept for the effectiveness of both acid-digestion recovery and resolving depositional ages of nonmarine strata. Samples were collected from Early Cretaceous foreland basin fluvial sandstone and lacustrine carbonate in southwestern Montana (USA). Late Aptian–early Albian (ca. 115–110 Ma) maximum depositional ages young upsection and agree with biostratigraphic ages. Lacustrine carbonate is an important component in many types of tectonic basins, and application of detrital zircon U-Pb geochronology holds considerable potential for dating critical chemical and climatic events recorded in their stratigraphy. It could also reveal new information for the persistent question about whether the stratigraphic record is dominated by longer periods of background fine-grained sedimentation versus short-duration coarse-grained events. In tectonically active basins, lacustrine carbonates may be valuable for dating the beginning of tectonic subsidence, especially during periods of finer-grained deposition dominated by mudrocks and carbonates. 
    more » « less