Here we explore purple non-sulfur bacteria (PNSB) and some of its biotech applications, with a focus on how these applications have been enhanced by manipulating the flow of reducing power. Cellular metabolism refers to the sum of chemical reactions that cells use to obtain energy and material to live, grow, and make products. Many of these reactions are performed by specialized proteins called enzymes, which act on a specific substrate, or input, to produce a specific effect or product, also called a metabolite. To make metabolites, you need three major inputs: carbon, energy, and electrons. Depending on the organism, carbon can be fixed from atmospheric CO2, or can be obtained from organic compounds like carbohydrates or lipids. Energy can be generated in a variety of ways, but typically results in the formation of phosphate bonds in molecules like adenosine triphosphate (ATP) for widespread use in the cell.
This content will become publicly available on March 20, 2025
Jungwoo Lee, High-School Student, and Arpita Bose, Associate Professor at Washington University in St. Louis, guide us through purple bacteria and their less-known applications, including wastewater treatment and biofertilization. Purple bacteria, also known as purple photosynthetic bacteria, which belong to the phylum Proteobacteria, can be classified into purple sulfur bacteria (PSB) and purple non-sulfur bacteria (PNSB). In contrast to PSB, PNSB demonstrate the ability to utilize various electron donors and acceptors, which further expands their applications. Their adaptable metabolism, coupled with well-defined genetic manipulation techniques, positions PNSB as ideal models for elucidating the intricacies of metabolic pathways, which hold significant implications for diverse biotechnological applications, including wastewater treatment, and as biofertilizers.
- PAR ID:
- 10506615
- Publisher / Repository:
- Open Access Government
- Date Published:
- Journal Name:
- Open Access Government
- Volume:
- 42
- Issue:
- 1
- ISSN:
- 2516-3817
- Page Range / eLocation ID:
- 402 to 403
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Harnessing redox power for biotechnological application in purple non-sulphur bacteria -
Evidence for autotrophic growth of purple sulfur bacteria using pyrite as electron and sulfur sourceSpear, John R (Ed.)
ABSTRACT Purple sulfur bacteria (PSB) are capable of anoxygenic photosynthesis via oxidizing reduced sulfur compounds and are considered key drivers of the sulfur cycle in a range of anoxic environments. In this study, we show that
Allochromatium vinosum (a PSB species) is capable of autotrophic growth using pyrite as the electron and sulfur source. Comparative growth profile, substrate characterization, and transcriptomic sequencing data provided valuable insight into the molecular mechanisms underlying the bacterial utilization of pyrite and autotrophic growth. Specifically, the pyrite-supported cell cultures (“py”’) demonstrated robust but much slower growth rates and distinct patterns from their sodium sulfide-amended positive controls. Up to ~200-fold upregulation of genes encoding variousc - andb -type cytochromes was observed in “py,” pointing to the high relevance of these molecules in scavenging and relaying electrons from pyrite to cytoplasmic metabolisms. Conversely, extensive downregulation of genes related to LH and RC complex components indicates that the electron source may have direct control over the bacterial cells’ photosynthetic activity. In terms of sulfur metabolism, genes encoding periplasmic or membrane-bound proteins (e.g., FccAB and SoxYZ) were largely upregulated, whereas those encoding cytoplasmic proteins (e.g., Dsr and Apr groups) are extensively suppressed. Other notable differentially expressed genes are related to flagella/fimbriae/pilin(+), metal efflux(+), ferrienterochelin(−), and [NiFe] hydrogenases(+). Characterization of the biologically reacted pyrite indicates the presence of polymeric sulfur. These results have, for the first time, put the interplay of PSB and transition metal sulfide chemistry under the spotlight, with the potential to advance multiple fields, including metal and sulfur biogeochemistry, bacterial extracellular electron transfer, and artificial photosynthesis.IMPORTANCE Microbial utilization of solid-phase substrates constitutes a critical area of focus in environmental microbiology, offering valuable insights into microbial metabolic processes and adaptability. Recent advancements in this field have profoundly deepened our knowledge of microbial physiology pertinent to these scenarios and spurred innovations in biosynthesis and energy production. Furthermore, research into interactions between microbes and solid-phase substrates has directly linked microbial activities to the surrounding mineralogical environments, thereby enhancing our understanding of the relevant biogeochemical cycles. Our study represents a significant step forward in this field by demonstrating, for the first time, the autotrophic growth of purple sulfur bacteria using insoluble pyrite (FeS2) as both the electron and sulfur source. The presented comparative growth profiles, substrate characterizations, and transcriptomic sequencing data shed light on the relationships between electron donor types, photosynthetic reaction center activities, and potential extracellular electron transfer in these organisms capable of anoxygenic photosynthesis. Furthermore, the findings of our study may provide new insights into early-Earth biogeochemical evolutions, offering valuable constraints for understanding the environmental conditions and microbial processes that shaped our planet’s history.
-
ABSTRACT With more than 5500 detected exoplanets, the search for life is entering a new era. Using life on Earth as our guide, we look beyond green landscapes to expand our ability to detect signs of surface life on other worlds. While oxygenic photosynthesis gives rise to modern green landscapes, bacteriochlorophyll-based anoxygenic phototrophs can also colour their habitats and could dominate a much wider range of environments on Earth-like exoplanets. Here, we characterize the reflectance spectra of a collection of purple sulfur and purple non-sulfur bacteria from a variety of anoxic and oxic environments. We present models for Earth-like planets where purple bacteria dominate the surface and show the impact of their signatures on the reflectance spectra of terrestrial exoplanets. Our research provides a new resource to guide the detection of purple bacteria and improves our chances of detecting life on exoplanets with upcoming telescopes. Our biological pigment data base for purple bacteria and the high-resolution spectra of Earth-like planets, including ocean worlds, snowball planets, frozen worlds, and Earth analogues, are available online, providing a tool for modellers and observers to train retrieval algorithms, optimize search strategies, and inform models of Earth-like planets, where purple is the new green.
-
Polyhydroxybutyrate (PHB) is a bio-based, biodegradable alternative to petroleum-based plastics. PHB production at industrial scales remains infeasible, in part due to insufficient yields and high costs. Addressing these challenges requires identifying novel biological chassis for PHB production and modifying known biological chassis to enhance production using sustainable, renewable inputs. Here, we take the former approach and present the first description of PHB production by two prosthecate photosynthetic purple non-sulfur bacteria (PNSB), Rhodomicrobium vannielii and Rhodomicrobium udaipurense. We show that both species produce PHB across photoheterotrophic, photoautotrophic, photoferrotrophic, and photoelectrotrophic growth conditions. Both species show the greatest PHB titers during photoheterotrophic growth on butyrate with dinitrogen gas as a nitrogen source (up to 44.08 mg/L), while photoelectrotrophic growth demonstrated the lowest titers (up to 0.13 mg/L). These titers are both greater (photoheterotrophy) and less (photoelectrotrophy) than those observed previously in a related PNSB, Rhodopseudomonas palustris TIE-1. On the other hand, we observe the highest electron yields during photoautotrophic growth with hydrogen gas or ferrous iron electron donors, and these electron yields were generally greater than those observed previously in TIE-1. These data suggest that non model organisms like Rhodomicrobium should be explored for sustainable PHB production and highlights utility in exploring novel biological chassis.more » « less
-
Abstract BACKGROUND Azoles are an important class of compounds that are widely used as corrosion inhibitors in aircraft de‐icing agents, cooling towers, semiconductor manufacturing and household dishwashing detergents. They also are important moieties in pharmaceutical drugs and fungicides. Azoles are widespread emerging contaminants occurring frequently in water bodies. Azole compounds can potentially cause inhibition towards key biological processes in natural ecosystems and wastewater treatment processes. Of particular concern is the inhibition of azoles to the nitrification process (aerobic oxidation of ammonium). This study investigated the acute toxicity of azole compounds towards the anaerobic ammonia oxidation (anammox) process, which is an important environmental biotechnology gaining traction for nutrient‐nitrogen removal during wastewater treatment. In this study, using batch bioassay techniques, the anammox toxicity of eight commonly occurring azole compounds was evaluated.
RESULTS The results show that 1
H ‐benzotriazole and 5‐methyl‐1H ‐benzotriazole had the highest inhibitory effect on the anammox process, causing 50% decrease in anammox activity (IC50) at concentrations of 19.6 and 17.8 mg L−1, respectively. 1H‐ imidazole caused less severe toxicity with an IC50of 79.4 mg L−1. The other azole compounds were either nontoxic (1H‐ pyrazole, 1H‐ 1,2,4‐triazole and 1‐methyl‐pyrazole) or at best mildly toxic (1H‐ benzotriazole‐5‐carboxylic acid and 3,5‐dimethyl‐1H‐ pyrazole) towards the anammox bacteria at the concentrations tested.CONCLUSIONS This study showed that most azole compounds tested displayed mild to low or no toxicity towards the anammox bacteria. The anammox bacteria were found to be far less sensitive to azoles compared to nitrifying bacteria. © 2019 Society of Chemical Industry