skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Temporally resolved relative krypton neutral density during breathing mode of a hall effect thruster recorded by TALIF
Abstract A key issue in the development of theory and models for plasma propulsion devices is to describe the instabilities and fluctuations of the devices. It has been widely recognized that many Hall effect thrusters (HETs) exhibit oscillations at frequencies in the range of ∼ 20 kHz. These ionization-related oscillations are generally referred to as Breathing Mode oscillations and have been the subject of considerable research. Here, for the first time, we report direct temporally resolved measurements of the ground state neutral density variation during the period of the oscillation. We used the laser-based Two-Photon Absorption Laser Induced Fluorescence (TALIF) technique to measure neutrals within the plume of a 1.5 kW HET operating on krypton (Kr). Our TALIF scheme employs a frequency-doubled, pulsed dye laser operating at ∼ 212 nm to probe ground state Kr atoms. A novel phase-binning approach is used to recover the time-dependent signal by assigning the timing of each collected TALIF signal (laser shot) relative to the phase of the discharge current. We find that the neutral density fluctuates quite strongly over the period of the oscillation, and that this fluctuation leads the current fluctuation as expected.  more » « less
Award ID(s):
2010466
PAR ID:
10506743
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Electric Propulsion
Volume:
3
Issue:
1
ISSN:
2731-4596
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. RationaleThe electrostatic linear ion trap (ELIT) can be operated as a multi‐reflection time‐of‐flight (MR‐TOF) or Fourier transform (FT) mass analyzer. It has been shown to be capable of performing high‐resolution mass analysis and high‐resolution ion isolations. Although it has been used in charge‐detection mass spectrometry (CDMS), it has not been widely used as a conventional mass spectrometer for ensemble measurements of ions, or for tandem mass spectrometer. The advantages of tandem mass spectrometer with high‐resolution ion isolations in the ELIT have thus not been fully exploited. MethodsA homebuilt ELIT was modified with BaF2viewports to facilitate transmission of a laser beam at the turnaround point of the second ion mirror in the ELIT. Fragmentation that occurs at the turnaround point of these ion mirrors should result in minimal energy partitioning due to the low kinetic energy of ions at these points. The laser was allowed to irradiate ions for a period of many oscillations in the ELIT. ResultsDue to the low energy absorption of gas‐phase ions during each oscillation in the ELIT, fragmentation was found to occur over a range of oscillations in the ELIT generating a homogeneous ion beam. A mirror‐switching pulse is shown to create time‐varying perturbations in this beam that oscillate at the fragment ion characteristic frequencies and generate a time‐domain signal. This was found to recover FT signal for protonated pYGGFL and pSGGFL precursor ions. ConclusionsFragmentation at the turnaround point of an ELIT by continuous‐wave infrared multiphoton dissociation (cw‐IRMPD) is demonstrated. In cases where laser power absorption is low and fragmentation occurs over many laps, a mirror‐switching pulse may be used to recover varying time‐domain signal. The combination of laser activation at the turnaround points and mirror‐switching isolation allows for tandem MS in the ELIT. 
    more » « less
  2. Abstract Three-minute oscillations are a common phenomenon in the solar chromosphere above a sunspot. Oscillations can be affected by the energy release process related to solar flares. In this paper, we report on an enhanced oscillation in flare event SOL2012-07-05T21:42 with a period of around 3 minutes that occurred at the location of a flare ribbon at a sunspot umbral–penumbral boundary and was observed in both chromospheric and coronal passbands. An analysis of this oscillation was carried out using simultaneous ground-based observations from the Goode Solar Telescope at the Big Bear Solar Observatory and space-based observations from the Solar Dynamics Observatory. A frequency shift was observed before and after the flare, with the running penumbral wave that was present with a period of about 200 s before the flare coexisting with a strengthened oscillation with a period of 180 s at the same locations after the flare. We also found a phase difference between different passbands, with the oscillation occurring from high-temperature to low-temperature passbands. Theoretically, the change in frequency was strongly dependent on the variation of the inclination of the magnetic field and the chromospheric temperature. Following an analysis of the properties of the region, we found the frequency change was caused by a slight decrease of the magnetic inclination angle with respect to the local vertical. In addition, we suggest that the enhanced 3 minute oscillation was related to the additional heating, maybe due to the downflow, during the EUV late phase of the flare. 
    more » « less
  3. Abstract The relative importance of propagating and cavity mode waves remains an important question regarding the generation of Pi2 pulsations detected on the ground. To determine the wave mode, we statistically generate spatial maps of magnetospheric oscillations that are coherent with ground Pi2 pulsations. The magnetospheric observations were made by the two Van Allen Probes spacecraft over a 7‐year period. The amount and quality of the spacecraft data allow us to investigate the mode structure of Pi2 pulsation in ways that were not possible in previous studies. We use theHcomponent of low‐latitude ground Pi2 pulsations detected in the 22–02 magnetic local time (MLT) sector as the reference signal to generateL‐MLT and meridional maps of the coherence, amplitude, and phase of the magnetospheric electric and magnetic field components defined in magnetic field aligned coordinates. We identify low‐frequency and high‐frequency components in Pi2 power spectra, and we are able to determine the mode structure of the high‐frequency events for the first time. The maps demonstrate that the poloidal components have higher coherence than the toroidal components. For each frequency component, the maps of the poloidal components agree with those of cavity mode oscillations obtained in a numerical simulation using realistic models for the magnetospheric mass density and magnetic field. This result is conclusive evidence of the cavity mode nature of Pi2 pulsations detected in the inner magnetosphere. 
    more » « less
  4. Abstract Nonlinear oscillations in micro- and nanoelectromechanical systems have emerged as an exciting research area in recent years due to their promise in realizing low-power, scalable, and reconfigurable mechanical memory and logic devices. Here, we report ultralow-power mechanical memory operations utilizing the nonlinear oscillation regime of GaN microcantilevers with embedded piezotransistive AlGaN/GaN heterostructure field effect transistors as highly sensitive deflection transducers. Switching between the high and low oscillatory states of the nonlinear oscillation regime was demonstrated using a novel phase-controlled opto-mechanical excitation setup, utilizing a piezo actuator and a pulsed laser as the primary and secondary excitation sources, respectively. Laser-based photoacoustic excitation was amplified through plasmonic absorption in Au nanoparticles deposited on a transistor. Thus, the minimum switching energy required for reliable memory operations was reduced to less than a picojoule (pJ), which translates to one of the lowest ever reported, when normalized for mass. 
    more » « less
  5. Convolutional Neural Networks (CNNs) have been explored to detect forced oscillations in windfarm systems in the past. However, these CNNs require a significant amount of data samples between inference queries and a significant amount of computational power and time. This leads to systems that have a large delay between a forced oscillation occurring and detecting the forced oscillation. This paper presents a novel approach applying Hyperdimensional Computing (HDC) as an effective solution for the first time in forced oscillation detection to overcome the problems of CNNs. HDC is able to reduce the time to detect forced oscillations in two ways: First, by reducing the time needed to collect data to create a new inference sample by reducing the number of data points required. Second, by providing a significantly smaller, more energy efficient, and faster model for detection than current state-of-the-art. Our results show that HDC, with an FPGA implementation, is able to achieve 55× faster detection of forced oscillations in windfarms while achieving the same accuracy as the best current CNN models using software solutions. 
    more » « less