skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Roll‐to‐Roll Compatible Topochemical Wetting Control for Metamaterial Printing
Abstract The widespread utilization of metamaterials, despite their immense transformative potential, faces challenges regarding scalability in mass production. To address these limitations, an additive method that leverages liquid inks and selective wetting to produce scalable and cost‐effective metamaterials is presented. UV‐based imprinting lithography is utilized to fabricate surface energy‐modulated patterns, enabling precise solution patterning. This approach, unlike conventional UV‐based imprinting lithography, not only accurately produces the negative replica of the stamp topography during UV‐induced crosslinking but also transfers a hydrophobic layer onto the raised surfaces of the imprinted hydrophilic layer, resulting in 3D shapes with spatially modulated surface energy. In the second process step, a functional ink is dragged over the patterned substrate where it dewets to fill the hydrophilic recesses. This innovative process enables high‐speed metamaterial production, with ink deposition speeds up to 12 m min−1. The method accommodates a wide range of inks, including metals, dielectrics, and semiconductors, providing meticulous control over vertical structures such as pattern thickness and hetero‐multilayer formation. Additionally, it offers flexibility in creating metamaterials on free‐standing ultra‐thin sheets, introducing desirable attributes like foldability and disposability. The effectiveness of this approach is validated through the fabrication and characterization of metallic metamaterials.  more » « less
Award ID(s):
2011401
PAR ID:
10506822
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Advanced Optical Materials
Date Published:
Journal Name:
Advanced Optical Materials
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A cantilever‐free scanning probe lithography (CF‐SPL)‐based method for the rapid polymerization of nanoscale features on a surface via crosslinking and thiol‐acrylate photoreactions is described, wherein the nanoscale position, height, and diameter of each feature can be finely and independently tuned. With precise spatiotemporal control over the illumination pattern, beam pen lithography (BPL) allows for the photo‐crosslinking of polymers into ultrahigh resolution features over centimeter‐scale areas using massively parallel >160 000 pen arrays of individually addressable pens that guide and focus light onto the surface with sub‐diffraction resolution. The photoinduced crosslinking reaction of the ink material, which is composed of photoinitiator, diphenyl(2,4,6‐trimethylbenzoyl) phosphine oxide, poly(ethylene glycol) diacrylate, and thiol‐modified functional binding molecules (i.e., thiol‐PEG‐biotin or 16‐mercaptohexanoic acid), proceeds to ≈80% conversion with UV exposure (72 mW cm−2) for short time periods (0.5 s). Such polymer patterns are further reacted with proteins (streptavidin and fibronectin) to yield protein arrays with feature arrangements at high resolution and densities controlled by local UV exposure. This platform, which combines polymer photochemistry and massive arrays of scanning probes, constitutes a new approach to making biomolecular microarrays in a high‐throughput and high‐yielding manner, opening new routes for biochip synthesis, bioscreening, and cell biology research. 
    more » « less
  2. Nano-Impression Lithography (NIL) has been demonstrated to produce nano features on webs that have value to society. Such demonstrations have largely been the result of NIL processes that involve the discrete stamping of a mold with nano-impressions into a thermoplastic web or a web coated with resin that is cured during the imprint process. To scale NIL to large area products which can be produced economically requires the imprinting to occur on roll-to-roll (R2R) process machines. Nip mechanics is a topic which has been explored in relation to drive nips and winding nips in R2R machines. Nip rollers will be needed to imprint webs at production speeds to ensure mold filling on an imprint roller. The objective of this paper is to demonstrate while the nip roller is required that it can also induce imperfections in the imprinted nano-features. Successful imprinting will require nip loads sufficient to fill the imprint mold and then addressing the nip mechanics which can induce shear and slip that could destroy the nano-features. The objective is to demonstrate through the study of nip mechanics that this shear and slip can be inhibited through the selection of nip materials and tension control of the web entering and exiting the nipped imprint roller. 
    more » « less
  3. null (Ed.)
    Over the past decade, the trade of counterfeit goods has increased. This has been enabled by advancements in low-cost digital printing methods (e.g., inkjet and laserjet) that are an asset for counterfeit production methods. However, each printing method produces characteristic printed features that can be used to identify not only the printing method, but also, uniquely identify the specific make and model of printer. This knowledge can be used for determination of whether or not the analyzed item is counterfeit. During the first phase of this research, chemical and physical analyses were performed on printed documents and ink samples for two types of digital printing: inkjet and laserjet. The results showed that it is possible to identify the digital method used to print a document by its unique features. Physical analysis revealed that the laserjet prints have a higher image quality characterized by sharper feature edge quality, brighter image area, and a thicker ink layer (10 micron average thickness) than in inkjet documents. Chemical analysis showed that the inkjet and laserjet inks could easily be distinguished by identifying the various ink components. Ink jet inks included (among others) water, ethylene glycol while laserjet inks presented styrene, methacrylate, and sulfide compounds. 
    more » « less
  4. Abstract Direct ink write deposition facilitates line‐by‐line extrusion of inks spanning wide viscoelastic ranges. Following deposition, post processing technologies permit tuning of the extrudate's material property characteristics—ultraviolet (UV) irradiation, facilitating the photopolymerization of UV‐reactive catalyst solutions, permits targeted modification of the extrudate's microstructure and in situ tuning of extrudate macrostructure. This report analyzes the morphological, rheological, and microstructural property relationships governing the printability, and processivity, of extruded UV‐curable resin inks for delineation of sufficiency and optimization of ink printability utilizing direct ink write technologies. A design‐of‐experiments approach is implemented to quantify significance regarding an extrudate's dimensional response to extrusion parameter variation and in situ processing parameters, identifying proportionally of nozzle velocity, nozzle height, and UV irradiation exposure with extrudate aspect ratio, reflected by respective maximum extrudate aspect ratio increases of 158% and 109%, regarding 121 and 123K resin inks. Finally, the relationship between extrudate morphology and microstructure variation was assessed via dielectric cure monitoring, whereby an extrudate's ion viscosity was calculated in relation to its rheological modulus, reflecting the relationship between an extrudate's morphology, rheological response, and printability, regarding its microstructural variation. 
    more » « less
  5. Photodetectors based on colloidal quantum dots (CQDs) and single layer graphene (SLG) have shown high responsivity due to the synergy of strong light absorption from CQDs and high mobility from SLG. However, it is still challenging to achieve high-density and small-footprint devices on a chip to meet the demand for their integration into electronic devices. Even though there are numerous approaches to pattern the chemically fragile CQD films, usually they require non-conventional approaches such as stamping and surface modification that may be non-compatible with semiconductor processing. In this study, we show that conventional lithography and dry etching can be used to pattern QD active films by employing a graphene monolayer passivation/protective layer that protects the surface ligands of CQDs. This protective layer avoids damage induced by lithography process solvents that deteriorate the carrier mobility of CQDs and therefore the photoresponse. Herein we report patterning of CQDs using conventional UV photolithography, achieving reproducible five-micron length PbS CQDs/SLG photodetectors with a responsivity of 10 8 A W −1 . We have also fabricated thirty-six PbS CQDs/SLG photodetectors on a single chip to establish micron size photodetectors. This process offers an approach to pattern QDs with conventional UV lithography and dry etching semiconductor technology to facilitate their integration into current semiconductor commercial technology. 
    more » « less