Let be a symmetrisable Kac–Moody algebra and Uhg its quantised enveloping algebra. Answering a question of P. Etingof, we prove that the quantum Weyl group operators of Uhg give rise to a canonical action of the pure braid group of g on any category O (not necessarily integrable) module. By relying on our recent results, we show that this action describes the monodromy of the rational Casimir connection on the Uhg-module corresponding to V. We also extend these results to yield equivalent representations of parabolic pure braid groups on parabolic category for Uhg and g. 
                        more » 
                        « less   
                    
                            
                            Monodromy of the Casimir connection of a symmetrisable Kac–Moody algebra
                        
                    
    
            Let g be a symmetrisable Kac-Moody algebra and V an integrable g-module in category O. We show that the monodromy of the (normally ordered) rational Casimir connection on V can be made equivariant with respect to the Weyl group W of g, and therefore defines an action of the braid group BW on V. We then prove that this action is canonically equivalent to the quantum Weyl group action of BW on a quantum deformation of V, that is an integrable, category O module V over the quantum group Uhg such that V/hV is isomorphic to V. This extends a result of the second author which is valid for g semisimple. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2302568
- PAR ID:
- 10506827
- Publisher / Repository:
- Springer Verlag
- Date Published:
- Journal Name:
- Inventiones mathematicae
- Volume:
- 236
- Issue:
- 2
- ISSN:
- 0020-9910
- Page Range / eLocation ID:
- 549 to 672
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The authors proved that a Weyl module for a simple algebraic group is irreducible over every field if and only if the module is isomorphic to the adjoint representation for $$E_{8}$$ or its highest weight is minuscule. In this paper, we prove an analogous criteria for irreducibility of Weyl modules over the quantum group $$U_{\zeta}({{\mathfrak g}})$$ where $${\mathfrak g}$$ is a complex simple Lie algebra and $$\zeta$$ ranges over roots of unity.more » « less
- 
            We use hypersurface support to classify thick (two-sided) ideals in the stable categories of representations for several families of finite-dimensional integrable Hopf algebras: bosonized quantum complete intersections, quantum Borels in type A, Drinfeld doubles of height 1 Borels in finite characteristic, and rings of functions on finite group schemes over a perfect field. We then identify the prime ideal (Balmer) spectra for these stable categories. In the curious case of functions on a finite group scheme G, the spectrum of the category is identified not with the spectrum of cohomology, but with the quotient of the spectrum of cohomology by the adjoint action of the subgroup of connected components in G.more » « less
- 
            We consider the finite generation property for cohomology of a finite tensor category C \mathscr {C} , which requires that the self-extension algebra of the unit \operatorname {Ext}^\text {\tiny ∙ }_\mathscr {C}(\mathbf {1},\mathbf {1}) is a finitely generated algebra and that, for each object V V in C \mathscr {C} , the graded extension group \operatorname {Ext}^\text {\tiny ∙ }_\mathscr {C}(\mathbf {1},V) is a finitely generated module over the aforementioned algebra. We prove that this cohomological finiteness property is preserved under duality (with respect to exact module categories) and taking the Drinfeld center, under suitable restrictions on C \mathscr {C} . For example, the stated result holds when C \mathscr {C} is a braided tensor category of odd Frobenius-Perron dimension. By applying our general results, we obtain a number of new examples of finite tensor categories with finitely generated cohomology. In characteristic 0 0 , we show that dynamical quantum groups at roots of unity have finitely generated cohomology. We also provide a new class of examples in finite characteristic which are constructed via infinitesimal group schemes.more » « less
- 
            Abstract Let $$V_*\otimes V\rightarrow {\mathbb {C}}$$ V ∗ ⊗ V → C be a non-degenerate pairing of countable-dimensional complex vector spaces V and $$V_*$$ V ∗ . The Mackey Lie algebra $${\mathfrak {g}}=\mathfrak {gl}^M(V,V_*)$$ g = gl M ( V , V ∗ ) corresponding to this pairing consists of all endomorphisms $$\varphi $$ φ of V for which the space $$V_*$$ V ∗ is stable under the dual endomorphism $$\varphi ^*: V^*\rightarrow V^*$$ φ ∗ : V ∗ → V ∗ . We study the tensor Grothendieck category $${\mathbb {T}}$$ T generated by the $${\mathfrak {g}}$$ g -modules V , $$V_*$$ V ∗ and their algebraic duals $$V^*$$ V ∗ and $$V^*_*$$ V ∗ ∗ . The category $${{\mathbb {T}}}$$ T is an analogue of categories considered in prior literature, the main difference being that the trivial module $${\mathbb {C}}$$ C is no longer injective in $${\mathbb {T}}$$ T . We describe the injective hull I of $${\mathbb {C}}$$ C in $${\mathbb {T}}$$ T , and show that the category $${\mathbb {T}}$$ T is Koszul. In addition, we prove that I is endowed with a natural structure of commutative algebra. We then define another category $$_I{\mathbb {T}}$$ I T of objects in $${\mathbb {T}}$$ T which are free as I -modules. Our main result is that the category $${}_I{\mathbb {T}}$$ I T is also Koszul, and moreover that $${}_I{\mathbb {T}}$$ I T is universal among abelian $${\mathbb {C}}$$ C -linear tensor categories generated by two objects X , Y with fixed subobjects $$X'\hookrightarrow X$$ X ′ ↪ X , $$Y'\hookrightarrow Y$$ Y ′ ↪ Y and a pairing $$X\otimes Y\rightarrow {\mathbf{1 }}$$ X ⊗ Y → 1 where 1 is the monoidal unit. We conclude the paper by discussing the orthogonal and symplectic analogues of the categories $${\mathbb {T}}$$ T and $${}_I{\mathbb {T}}$$ I T .more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    