Spin polarization in chiral molecules is a magnetic molecular response associated with electron transport and enantioselective bond polarization that occurs even in the absence of an external magnetic field. An unexpected finding by Santos and co-workers reported enantiospecific NMR responses in solid-state cross-polarization (CP) experiments, suggesting a possible additional contribution to the indirect nuclear spin-spin coupling in chiral molecules induced by bond polarization in the presence of spin-orbit coupling. Herein we provide a theoretical treatment for this phenomenon, presenting an effective spin-Hamiltonian for helical molecules like DNA and density functional theory (DFT) results on amino acids that confirm the dependence of J-couplings on the choice of enantiomer. The connection between nuclear spin dynamics and chirality could offer insights for molecular sensing and quantum information sciences. These results establish NMR as a potential tool for chiral discrimination without external agents.
more »
« less
Time-dependent growth of nuclear spin polarization under periodic optical pumping
Consecutive circularly-polarized optical pulses generate and rotate electron spin polarization through optical orientation and the optical Stark effect. We perform time- and magnetic-field-dependent optical pump-probe measurements on gallium arsenide and observe a variable Overhauser field growth that depends on the external magnetic field and laser wavelength. We show that the time dependence of the nuclear spin polarization can be attributed to the time-averaged electron spin polarization produced along the external magnetic field direction.
more »
« less
- Award ID(s):
- 2207162
- PAR ID:
- 10506877
- Publisher / Repository:
- NSF-PAR
- Date Published:
- Journal Name:
- Physical Review B
- Volume:
- 108
- Issue:
- 11
- ISSN:
- 2469-9950
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An experimental and computational optical pump-probe model is constructed, which utilizes two ultrafast pump pulses within the repetition period of a mode-locked laser to generate electron spin polarization. This report focuses on the effects of resonant spin amplification induced by an infinite train of the two-pump pulses. The first pump pulse is used to generate ordinary resonant spin amplification spectra, while the second pump pulse is used to manipulate the generated spectra. This model gives control of the accumulation of spin polarized electrons along a magnetic field by selecting the temporal separation of the two-pump pulses. The computational model accurately predicts and agrees with the experimental results, which shows manipulation of resonant spin peaks that are no longer entirely dependent on the external magnetic field. This two-pump model and the associated manipulations of resonant spin peaks can be used as a platform to construct and conceptualize resonant spin amplification-based optospintronic devices and applications.more » « less
-
Electron-nuclear spin interactions by pulsed optical pumping have been found to polarize the nuclear spin system, leading to the nuclei building up an intrinsic magnetic field known as the Overhauser field. Studies have indicated an Overhauser field hysteresis effect dependent on the sweep direction of an externally applied magnetic field in negatively detuned periodically pumped Si-doped GaAs. Although predictions of bistable mode-locked electron spin precession frequency modes have been made for systems exhibiting this hysteresis, there have been no reports on the experimental observation of said bistable spin precession modes. This report details the evolution of bistable Overhauser field solutions leading to a hysteretic effect in negatively detuned optical excitation of Si-doped GaAs by magneto-optic pump–probe spectroscopy in the Voigt geometry and investigates the resulting consequence of this hysteresis acting on the electron spin system. One manifestation of the Overhauser field hysteresis acting on the electron spin system leads to the discretization of bistable mode-locked electron spin precession modes within a given band of externally applied magnetic fields. A method for preferentially accessing the two different and stable mode-locked spin precession modes within a given band of externally applied magnetic field is outlined, which may be of interest for communities utilizing electron and nuclear spins for information processing protocols.more » « less
-
Electron paramagnetic resonance of Cr3+ ions in β-Ga2O3 is investigated using terahertz spectroscopic ellipsometry under magnetic field sweeping, a technique that enables the polarization resolving capabilities of ellipsometry for magnetic resonance measurements. We employed a single-crystal chromium-doped β-Ga2O3 sample, grown by the Czochralski method, and performed ellipsometry measurements at magnetic field strengths ranging from 2 to 8 T, at frequencies from 82 to 125 and 190 to 230 GHz, and at a temperature of 15 K. Analysis of the frequency-field diagrams derived from all Mueller matrix elements allowed us to differentiate between the effects of electron spin Zeeman splitting and zero-field splitting and to accurately determine the anisotropic Zeeman splitting g-tensor and the zero-field splitting parameters. Our results confirm that Cr3+ ions predominantly substitute into octahedral gallium sites. Line shape analysis of Mueller matrix element spectra using the Bloch–Brillouin model provides the spin volume concentration of Cr3+ sites, showing very good agreement with results from chemical analysis by inductively coupled plasma-optical emission spectroscopy and suggesting minimal occupation of sites with inactive electron paramagnetic resonance. This study enhances our understanding of the magnetic and electronic properties of chromium-doped β-Ga2O3 and demonstrates the effectiveness of high-frequency/high-field electron paramagnetic resonance generalized spectroscopic ellipsometry for characterizing defects in ultrawide-bandgap semiconductors.more » « less
-
Photogenerated spin-correlated radical pairs (SCRPs) in electron donor–bridge–acceptor (D–B–A) molecules can act as molecular qubits and inherently spin qubit pairs. SCRPs can take singlet and triplet spin states, comprising the quantum superposition state. Their synthetic accessibility and well-defined structures, together with their ability to be prepared in an initially pure, entangled spin state and optical addressability, make them one of the promising avenues for advancing quantum information science. Coherence between two spin states and spin selective electron transfer reactions form the foundation of using SCRPs as qubits for sensing. We can exploit the unique sensitivity of the spin dynamics of SCRPs to external magnetic fields for sensing applications including resolution-enhanced imaging, magnetometers, and magnetic switch. Molecular quantum sensors, if realized, can provide new technological developments beyond what is possible with classical counterparts. While the community of spin chemistry has actively investigated magnetic field effects on chemical reactions via SCRPs for several decades, we have not yet fully exploited the synthetic tunability of molecular systems to our advantage. This review offers an introduction to the photogenerated SCRPs-based molecular qubits for quantum sensing, aiming to lay the foundation for researchers new to the field and provide a basic reference for researchers active in the field. We focus on the basic principles necessary to construct molecular qubits based on SCRPs and the examples in quantum sensing explored to date from the perspective of the experimentalist.more » « less
An official website of the United States government

