skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparative Metabolic Analysis Reveals a Metabolic Switch in Mature, Hydrated, and Germinated Pollen in Arabidopsis thaliana
Pollen germination is an essential process for pollen tube growth, pollination, and therefore seed production in flowering plants, and it requires energy either from remobilization of stored carbon sources, such as lipids and starches, or from secreted exudates from the stigma. Transcriptome analysis fromin vitropollen germination previously showed that 14 GO terms, including metabolism and energy, were overrepresented inArabidopsis. However, little is understood about global changes in carbohydrate and energy-related metabolites during the transition from mature pollen grain to hydrated pollen, a prerequisite to pollen germination, in most plants, includingArabidopsis. In this study, we investigated differential metabolic pathway enrichment among mature, hydrated, and germinated pollen using an untargeted metabolomic approach. Integration of publicly available transcriptome data with metabolomic data generated as a part of this study revealed starch and sucrose metabolism increased significantly during pollen hydration and germination. We analyzed in detail alterations in central metabolism, focusing on soluble carbohydrates, non-esterified fatty acids, glycerophospholipids, and glycerolipids. We found that several metabolites, including palmitic acid, oleic acid, linolenic acid, quercetin, luteolin/kaempferol, and γ-aminobutyric acid (GABA), were elevated in hydrated pollen, suggesting a potential role in activating pollen tube emergence. The metabolite levels of mature, hydrated, and germinated pollen, presented in this work provide insights on the molecular basis of pollen germination.  more » « less
Award ID(s):
1427621
PAR ID:
10506953
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Frontiers in Plant Science
Date Published:
Journal Name:
Frontiers in Plant Science
Volume:
13
ISSN:
1664-462X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In flowering plants, male gametes are immotile and carried by dry pollen grains to the female organ. Dehydrated pollen is thought to withstand abiotic stress when grains are dispersed from the anther to the pistil, after which sperm cells are delivered via pollen tube growth for fertilization and seed set. Yet, the underlying molecular changes accompanying dehydration and the impact on pollen development are poorly understood. To gain a systems perspective, we analyzed published transcriptomes and proteomes of developing Arabidopsis thaliana pollen. Waves of transcripts are evident as microspores develop to bicellular, tricellular, and mature pollen. Between the “early”- and “late”-pollen-expressed genes, an unrecognized cluster of transcripts accumulated, including those encoding late-embryogenesis abundant (LEA), desiccation-related protein, transporters, lipid-droplet associated proteins, pectin modifiers, cysteine-rich proteins, and mRNA-binding proteins. Results suggest dehydration onset initiates after bicellular pollen is formed. Proteins accumulating in mature pollen like ribosomal proteins, initiation factors, and chaperones are likely components of mRNA-protein condensates resembling “stress” granules. Our analysis has revealed many new transcripts and proteins that accompany dehydration in developing pollen. Together with published functional studies, our results point to multiple processes, including (1) protect developing pollen from hyperosmotic stress, (2) remodel the endomembrane system and walls, (3) maintain energy metabolism, (4) stabilize presynthesized mRNA and proteins in condensates of dry pollen, and (5) equip pollen for compatibility determination at the stigma and for recovery at rehydration. These findings offer novel models and molecular candidates to further determine the mechanistic basis of dehydration and desiccation tolerance in plants. 
    more » « less
  2. <bold>Summary</bold> Sexual reproduction in flowering plants depends on the fitness of the male gametophyte during fertilization. Because pollen development is highly sensitive to hot and cold temperature extremes, reliable methods to evaluate pollen viability are important for research into improving reproductive heat stress (HS) tolerance. Here, we describe an approach to rapidly evaluate pollen viability using a reactive oxygen species (ROS) probe dichlorodihydrofluorescein diacetate (i.e. H2DCFDA‐staining) coupled with flow cytometry. In using flow cytometry to analyze mature pollen harvested from Arabidopsis and tomato flowers, we discovered that pollen distributed bimodally into ‘low‐ROS’ and ‘high‐ROS’ subpopulations. Pollen germination assays following fluorescence‐activated cell sorting revealed that the high‐ROSpollen germinated with a frequency that was 35‐fold higher than the low‐ROSpollen, supporting a model in which a significant fraction of a flower's pollen remains in a low metabolic or dormant state even after hydration. The ability to use flow cytometry to quantifyROSdynamics within a large pollen population was shown by dose‐dependent alterations inDCF‐fluorescence in response to oxidative stress or antioxidant treatments. HS treatments (35°C) increasedROSlevels, which correlated with a ~60% reduction in pollen germination. These results demonstrate the potential of using flow cytometry‐based approaches to investigate metabolic changes during stress responses in pollen. 
    more » « less
  3. Abstract BackgroundThe La-related proteins (LARPs) are a superfamily of RNA-binding proteins associated with regulation of gene expression. Evidence points to an important role for post-transcriptional control of gene expression in germinating pollen tubes, which could be aided by RNA-binding proteins. ResultsIn this study, a genome-wide investigation of the LARP proteins in eight plant species was performed. The LARP proteins were classified into three families based on a phylogenetic analysis. The gene structure, conserved motifs,cis-acting elements in the promoter, and gene expression profiles were investigated to provide a comprehensive overview of the evolutionary history and potential functions ofZmLARPgenes in maize. Moreover,ZmLARP6c1was specifically expressed in pollen and ZmLARP6c1 was localized to the nucleus and cytoplasm in maize protoplasts. Overexpression ofZmLARP6c1enhanced the percentage pollen germination compared with that of wild-type pollen. In addition, transcriptome profiling analysis revealed that differentially expressed genes includedPABPhomologous genes and genes involved in jasmonic acid and abscisic acid biosynthesis, metabolism, signaling pathways and response in aZmlarp6c1::Dsmutant andZmLARP6c1-overexpression line compared with the corresponding wild type. ConclusionsThe findings provide a basis for further evolutionary and functional analyses, and provide insight into the critical regulatory function ofZmLARP6c1in maize pollen germination. 
    more » « less
  4. Abstract Cells employ multiple systems to maintain cellular integrity, including mechanosensitive ion channels and the cell wall integrity (CWI) pathway. Here, we use pollen as a model system to ask how these different mechanisms are interconnected at the cellular level. MscS-Like 8 (MSL8) is a mechanosensitive channel required to protect Arabidopsis thaliana pollen from osmotic challenges during in vitro rehydration, germination, and tube growth. New CRISPR/Cas9 and artificial miRNA-generated msl8 alleles produced unexpected pollen phenotypes, including the ability to germinate a tube after bursting, dramatic defects in cell wall structure, and disorganized callose deposition at the germination site. We document complex genetic interactions between MSL8 and two previously established components of the CWI pathway, MARIS and ANXUR1/2. Overexpression of MARISR240C-FP suppressed the bursting, germination, and callose deposition phenotypes of msl8 mutant pollen. Null msl8 alleles suppressed the internalized callose structures observed in MARISR240C-FP lines. Similarly, MSL8-YFP overexpression suppressed bursting in the anxur1/2 mutant background, while anxur1/2 alleles reduced the strong rings of callose around ungerminated pollen grains in MSL8-YFP overexpressors. These data show that mechanosensitive ion channels modulate callose deposition in pollen and provide evidence that cell wall and membrane surveillance systems coordinate in a complex manner to maintain cell integrity. 
    more » « less
  5. Abstract Plants regenerated from seedling explants (hypocotyls and cotyledons) of the Solanaceae family membersPhysalis grisea(groundcherry),Solanum lycopersicum(tomato), andSolanum prinophyllum(forest nightshade) were used to determine the in vitro culture parameters that contribute to the incidence in polyploidization of tissue culture-derived plants (regenerants) from these species. We examined the possible effects of zeatin concentration in the plant regeneration medium, explant source, and species. Plants were grown to maturity under greenhouse conditions, pollen was collected and germinated. Flow cytometry analysis verified the utility of the pollen germination method for determining differences in ploidy, which was based on the number of pollen tubes produced with one tube representing diploid and two indicating polyploid. As for zeatin concentration, we assessed the effect of our standard method of initiation on medium containing 2 mg/l followed by 1 mg/l 2 weeks after culture initiation in comparison with 0.25, 0.5, and 1 mg/l throughout the culture lifetime. There were no major correlations for zeatin concentration on ploidy status across the species except for plants regenerated fromS. lycopersicumhypocotyl explants where the percentage of polyploid regenerants increased with increasing concentrations. As for species and explant effects,P. griseaplants regenerated from hypocotyl explants had the highest percentage of polyploid plants at 81% compared to 43% and 35% forS. lycopersicumandS. prinophyllum, respectively. From cotyledons, 8% ofS. lycopersicumand 20% ofS. prinophyllumwere polyploid. A comparison withP. griseacould not be made because cotyledon explants do not regenerate on zeatin-containing medium. The results indicated the incidence of polyploidization cannot be generalized for zeatin concentration, however, an influence of explant type and species was observed. Effects of increased ploidy on plant morphology were primarily larger flower and seed size; however, no significant differences were observed in plant or fruit size. 
    more » « less