Despite the enormous potential for the use of stereospecific cross-coupling reactions to rationally manipulate the three-dimensional structure of organic molecules, the factors that control the transfer of stereochemistry in these reactions remain poorly understood. Here we report a mechanistic and synthetic investigation into the use of enantioenriched alkylboron nucleophiles in stereospecific Pd-catalyzed Suzuki cross-coupling reactions. By developing a suite of molecular descriptors of phosphine ligands, we could apply predictive statistical models to select or design distinct ligands that respectively promoted stereoinvertive and stereoretentive cross-coupling reactions. Stereodefined branched structures were thereby accessed through the predictable manipulation of absolute stereochemistry, and a general model for the mechanism of alkylboron transmetallation was proposed.
more »
« less
Catalytic Asymmetric Synthesis of Zinc Metallacycles
Transition-metal-catalyzed reductive coupling reactions of alkynes and imines are attractive methods for the synthesis of chiral allylic amines. Mechanistically, these reactions involve an oxidative cyclization of the alkyne and the imine to generate a metallacyclic intermediate, which then reacts with H2 or an H2 surrogate to form the product. As an alternative to this hydrogenolysis pathway, here we show that transmetallation to zinc can occur, forming a zinc metallacycle product. This organozinc product serves as a versatile nucleophile for carbon–carbon and carbon–heteroatom coupling reactions. Mechanistic studies based on isotopic labelling experiments and DFT calculations suggest that the key transmetallation step occurs between a Co(II) species and ZnCl2.
more »
« less
- Award ID(s):
- 2101931
- PAR ID:
- 10507120
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Journal of the American Chemical Society
- Volume:
- 145
- Issue:
- 37
- ISSN:
- 0002-7863
- Page Range / eLocation ID:
- 20152 to 20157
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nickel-catalyzed cross-electrophile coupling (XEC) reactions of (hetero)aryl electrophiles represent appealing alternatives to palladium-catalyzed methods for biaryl synthesis, but they often generate significant quantities of homocoupling and/or proto-dehalogenation side products. In this study, an informer library of heteroaryl chloride and aryl bromide coupling partners is used to identify Ni-catalyzed XEC conditions that access high selectivity for the cross-product when using equimolar quantities of the two substrates. Two different catalyst systems are identified that show complementary scope and broad functional-group tolerance, and time-course data suggest the two methods follow different mechanisms. A NiBr2/terpyridine catalyst system with Zn as the reductant converts the aryl bromide into an aryl-zinc intermediate that undergoes in situ coupling with 2-chloropyridines, while a NiBr2/bipyridine catalyst system with tetrakis(dimethylamino)ethylene as the reductant uses FeBr2 and NaI as additives to achieve selective cross-coupling.more » « less
-
Rock–water–carbon interactions germane to serpentinization in hydrothermal vents have occurred for over 4 billion years, ever since there was liquid water on Earth. Serpentinization converts iron(II) containing minerals and water to magnetite (Fe3O4) plus H2. The hydrogen can generate native metals such as awaruite (Ni3Fe), a common serpentinization product. Awaruite catalyzes the synthesis of methane from H2 and CO2 under hydrothermal conditions. Native iron and nickel catalyze the synthesis of formate, methanol, acetate, and pyruvate—intermediates of the acetyl-CoA pathway, the most ancient pathway of CO2 fixation. Carbon monoxide dehydrogenase (CODH) is central to the pathway and employs Ni0 in its catalytic mechanism. CODH has been conserved during 4 billion years of evolution as a relic of the natural CO2-reducing catalyst at the onset of biochemistry. The carbide-containing active site of nitrogenase—the only enzyme on Earth that reduces N2—is probably also a relic, a biological reconstruction of the naturally occurring inorganic catalyst that generated primordial organic nitrogen. Serpentinization generates Fe3O4 and H2, the catalyst and reductant for industrial CO2 hydrogenation and for N2 reduction via the Haber–Bosch process. In both industrial processes, an Fe3O4 catalyst is matured via H2-dependent reduction to generate Fe5C2 and Fe2N respectively. Whether serpentinization entails similar catalyst maturation is not known. We suggest that at the onset of life, essential reactions leading to reduced carbon and reduced nitrogen occurred with catalysts that were synthesized during the serpentinization process, connecting the chemistry of life and Earth to industrial chemistry in unexpected ways.more » « less
-
NA (Ed.)Cross-coupling reactions are typically carried out under batch reaction conditions in which the reactants and catalyst are charged to a vessel that is then heated for a specified period of time followed by removal of the reaction product mixture However, it would be difficult to effectively take advantage of the elevated catalytic activity exhibited by the catalyst under batch reaction conditions given the short reaction times required to affect conversion to product. We have recently prepared nickel nanoparticles supported on multi-walled carbon nanotubes (Ni/MWCNTs) by dry mixing of the corresponding nickel salts and multi-walled carbon nanotubes using a mechanical shaking of the ball-mill. The method allows for bulk production of Ni/M WCNTs nanoparticles with small particle size of 5- 10 nm ideal for application in batch and continuous flow cross-coupling catalysis. As an alternative approach to batch reactions, we successfully evaluated the Ni/MWCNTs system for Suzuki cross-coupling reactions under continuous flow reaction conditions by which the reactants can be fed onto a catalyst bed at a specified feed rate and reaction temperature while the Suzuki product is continuously recovered. This approach has the additional advantage of a significantly greater surface-to-volume ratio which significantly reduces the catalyst contact time. Furthermore, various functionalized aryl halides and phenylboronic acids can be prepared under continuous flow conditions in high conversion %, a feature which allows for industrial and pharmaceutical applications of this method in future.more » « less
-
NA (Ed.)Metal catalyzed carbon-carbon bond forming reactions have rapidly become one of the most effective tools in organic synthesis for the assembly of highly functionalized molecules. These reactions have typically been carried out under homogeneous reaction conditions, which require the use of ligands to solubilize the catalyst and broaden its window of reactivity. However, the use of these catalysts under homogeneous conditions has limited their commercial viability due to product contamination as a direct result of inability to effectively separate the catalyst from the reaction product. Ligand-free heterogeneous catalysis presents a promising option to address this problem as evidenced by the significant increase in research activity in this area. We have recently developed a simple, one-step method for the preparation nickel nanoparticles supported on multi-walled carbon nanotubes (Ni/MWCNTs) under mechanical shaking in a ball-mill. The preparation method is very fast and straightforward which does not require any chemicals, solvents, or additional ligands. The as-prepared nanoparticles demonstrated remarkable catalytic activities in Suzuki cross-coupling reactions of the functionalized aryl halides and phenylboronic acids in batch with high turnover number in a single catalytic reaction. Batch operations have several inherent limitations that include reproducibility, scalability, and reactor productivity. Continuous flow chemistry has been considered as an alternative approach in academic and industrial processes due to its efficient and innovative synthetic design. Due to the low level of leaching observed in batch reactions as well as remarkable recyclability, the Ni/MWCNTs nanoparticles demonstrated remarkable catalytic activity in Suzuki coupling reactions with a diverse range of functionalized aryl halides and phenyl boronic acids under continuous flow conditions. Further optimization of the method including the reaction time, temperature, required solvents, flow rate, and minimum residence time will be discussed in this presentation.more » « less
An official website of the United States government

