Abstract We define several equivariant concordance invariants using knot Floer homology. We show that our invariants provide a lower bound for the equivariant slice genus and use this to give a family of strongly invertible slice knots whose equivariant slice genus grows arbitrarily large, answering a question of Boyle and Issa. We also apply our formalism to several seemingly nonequivariant questions. In particular, we show that knot Floer homology can be used to detect exotic pairs of slice disks, recovering an example due to Hayden, and extend a result due to Miller and Powell regarding stabilization distance. Our formalism suggests a possible route toward establishing the noncommutativity of the equivariant concordance group.
more »
« less
Quantitative Heegaard Floer cohomology and the Calabi invariant
Abstract We define a new family of spectral invariants associated to certain Lagrangian links in compact and connected surfaces of any genus. We show that our invariants recover the Calabi invariant of Hamiltonians in their limit. As applications, we resolve several open questions from topological surface dynamics and continuous symplectic topology: We show that the group of Hamiltonian homeomorphisms of any compact surface with (possibly empty) boundary is not simple; we extend the Calabi homomorphism to the group of hameomorphisms constructed by Oh and Müller, and we construct an infinite-dimensional family of quasi-morphisms on the group of area and orientation preserving homeomorphisms of the two-sphere. Our invariants are inspired by recent work of Polterovich and Shelukhin defining and applying spectral invariants, via orbifold Floer homology, for links composed of parallel circles in the two-sphere. A particular feature of our work is that it avoids the orbifold setting and relies instead on ‘classical’ Floer homology. This not only substantially simplifies the technical background but seems essential for some aspects (such as the application to constructing quasi-morphisms).
more »
« less
- Award ID(s):
- 2227372
- PAR ID:
- 10507136
- Publisher / Repository:
- Forum of Mathematics, Pi
- Date Published:
- Journal Name:
- Forum of Mathematics, Pi
- Volume:
- 10
- ISSN:
- 2050-5086
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We consider the set of connected surfaces in the 4‐ball with boundary a fixed knot in the 3‐sphere. We define the stabilization distance between two surfaces as the minimal such that we can get from one to the other using stabilizations and destabilizations through surfaces of genus at most . Similarly, we consider a double‐point distance between two surfaces of the same genus that is the minimum over all regular homotopies connecting the two surfaces of the maximal number of double points appearing in the homotopy. To many of the concordance invariants defined using Heegaard Floer homology, we construct an analogous invariant for a pair of surfaces. We show that these give lower bounds on the stabilization distance and the double‐point distance. We compute our invariants for some pairs of deform‐spun slice disks by proving a trace formula on the full infinity knot Floer complex, and by determining the action on knot Floer homology of an automorphism of the connected sum of a knot with itself that swaps the two summands. We use our invariants to find pairs of slice disks with arbitrarily large distance with respect to many of the metrics we consider in this paper. We also answer a slice‐disk analog of Problem 1.105 (B) from Kirby's problem list by showing the existence of non‐0‐cobordant slice disks.more » « less
-
Viewing the BRAID invariant as a generator of link Floer homology, we generalize work of Baldwin–Vela-Vick to obtain rank bounds on the next-to-top grading of knot Floer homology. These allow us to classify links with knot Floer homology of rank at most eight and prove a variant of a classification of links with Khovanov homology of low rank due to Xie–Zhang. In another direction, we use a variant of Ozsváth–Szabó's classification ofE_2collapsed\mathbb{Z}\oplus\mathbb{Z}filtered chain complexes to show that knot Floer homology detectsT(2,8)andT(2,10). Combining these techniques with the spectral sequences of Batson–Seed, Dowlin, and Lee, we can show that Khovanov homology likewise detectsT(2,8)andT(2,10).more » « less
-
Given an involution on a rational homology 3-sphere Y with quotient the 3-sphere, we prove a formula for the Lefschetz num- ber of the map induced by this involution in the reduced mono- pole Floer homology. This formula is motivated by a variant of Witten’s conjecture relating the Donaldson and Seiberg–Witten invariants of 4-manifolds. A key ingredient is a skein-theoretic ar- gument, making use of an exact triangle in monopole Floer homol- ogy, that computes the Lefschetz number in terms of the Murasugi signature of the branch set and the sum of Frøyshov invariants as- sociated to spin structures on Y . We discuss various applications of our formula in gauge theory, knot theory, contact geometry, and 4-dimensional topology.more » « less
-
Abstract We establish some new relationships between Milnor invariants and Heegaard Floer homology. This includes a formula for the Milnor triple linking number from the link Floer complex, detection results for the Whitehead link and Borromean rings, and a structural property of the $$d$$-invariants of surgeries on certain algebraically split links.more » « less
An official website of the United States government

