skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inorganic Carbon-Limited Freshwater Algal Growth at High pH: Revisited with Focus on Alkalinity
Highlights Non-carbonate components of BG11 media impact TIC calculation on average 4.00 mg/L at high pH. BG11 media non-carbonate alkalinity (NCA) varies with pH: NCA (meq/L) = 0.0393×e0.2075×pH+ (2.086×10-9)e1.860×pH.Monod kinetic constants with CO2, HCO3-, and CO32-as inorganic carbon sources are improved from a previous report.Kinetic constants continue to be the only known reports considering multiple inorganic carbon sources.Algal stoichiometric reactions are developed that account for variation in cell content and carbon source. Abstract.Due to increasing atmospheric CO2, algal growth systems at high pH are of interest to support enhanced diffusion and carbon capture. Given the interactions between algal growth, pH, and alkalinity, data from Watson and Drapcho (2016) were re-examined to determine the impact of the non-carbonate constituents in BG11 media on estimates of Monod kinetic parameters, biomass yield, and cell stoichiometry. Based on a computational method, non-carbonate alkalinity (NCA) in BG11 media varies with pH according to: NCA (meq/L) = 0.0393×e0.2075×pH + (2.086×10-9)e1.860×pH (R2 = 0.999) over the pH range of 10.3 – 11.5. Updated maximum specific growth rates were determined to be 0.060, 0.057, and 0.051 hr-1 for CO2, HCO3, and CO3, respectively. Generalizable stoichiometric algal growth equations that consider variable nutrient ratios and multiple inorganic carbon species were developed. Improved kinetic and stoichiometric parameters will serve as the foundation for a dynamic mathematical model to support the design of high pH algal carbon capture systems. Keywords: Algae, Alkalinity, Carbon Abatement, Carbon Capture, Kinetics, Stoichiometry, Total Inorganic Carbon.  more » « less
Award ID(s):
2219258
PAR ID:
10507189
Author(s) / Creator(s):
; ;
Publisher / Repository:
Journal of the American Society of Agricultural and Biological Engineers
Date Published:
Journal Name:
Journal of the ASABE
Volume:
66
Issue:
6
ISSN:
2769-3287
Page Range / eLocation ID:
1425 to 1435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary The evolutionary and ecological story of coccolithophores poses questions about their heterotrophy, surviving darkness after the end‐Cretaceous asteroid impact as well as survival in the deep ocean twilight zone. Uptake of dissolved organic carbon might be an alternative nutritional strategy for supply of energy and carbon molecules.Using long‐term batch culture experiments, we examined coccolithophore growth and maintenance on organic compounds in darkness. Radiolabelled experiments were performed to study the uptake kinetics. Pulse–chase experiments were used to examine the uptake into unassimilated, exchangeable pools vs assimilated, nonexchangeable pools.We found that coccolithophores were able to survive and maintain their metabolism for up to 30 d in darkness, accomplishing about one cell division. The concentration dependence for uptake was similar to the concentration dependence for growth inCruciplacolithus neohelis, suggesting that it was taking up carbon compounds and immediately incorporating them into biomass. We recorded net incorporation of radioactivity into the particulate inorganic fraction.We conclude that osmotrophy provides nutritional flexibility and supports long‐term survival in light intensities well below threshold for photosynthesis. The incorporation of dissolved organic matter into particulate inorganic carbon, raises fundamental questions about the role of the alkalinity pump and the alkalinity balance in the sea. 
    more » « less
  2. Summary Microalgae adapted to near‐zero temperatures and high light levels live on snowfields and glaciers worldwide. Snow algae have red‐colored pigments that darken snow surfaces, lowering its albedo and accelerating snowmelt. Despite their importance to the cryosphere, we know little about controls on snow algal productivity and biomass.Here, we characterize photophysiology from diverse natural field‐collected populations of alpine snow algae from the North Cascades of Washington, USA, where the major red‐bloom producing generaChlainomonas,Sanguina, andRosettawere present. We tested short‐term physiological responses of snow algae to light (0–3000 μmol m−2 s−1) and CO2levels (0–1600 ppm), allowing us to determine the saturating light and CO2levels for snow algal community net photosynthesis.All snow algal communities surveyed were adapted to extremely high light levels (3000 μmol m−2 s−1). In addition, photosynthesis rates of all the snow algal communities responded strongly to increasing CO2levels. At current atmospheric CO2levels (420 ppm), snow algal net photosynthesis rates were onlyc.50% saturated.Together, these results suggest the primary productivity of important bloom‐forming snow algal communities in alpine ecosystems will likely rise as atmospheric CO2concentrations increase, regardless of potential changes in available light levels. 
    more » « less
  3. Abstract The capacity of aquatic systems to buffer acidification depends on the sum contributions of various chemical species to total alkalinity (TA). Major TA contributors are inorganic, with carbonate and bicarbonate considered the most important. However, growing evidence shows that many rivers, estuaries, and coastal waters contain dissolved organic molecules with charge sites that create organic alkalinity (OrgAlk). This study describes the first comparison of (1) OrgAlk distributions and (2) acid–base properties in contrasting estuary‐plume systems: the Pleasant (Maine, USA) and the St. John (New Brunswick, CA). The substantial concentrations of OrgAlk in each estuary were sometimes not conservative with salinity and typically associated with very low pH. Two approaches to OrgAlk measurement showed consistent differences, indicating acid–base characteristics inconsistent with the TA definition. The OrgAlk fraction of TA ranged from 78% at low salinity to less than 0.4% in the coastal ocean endmember. Modeling of titration data identified three groups of organic charge sites, with mean acid–base dissociation constants (pKa) of 4.2 (± 0.5), 5.9 (± 0.7) and 8.5 (± 0.2). These represented 21% (± 9%), 8% (± 5%), and 71% (± 11%) of titrated organic charge groups. Including OrgAlk, pKa, and titrated organic charge groups in carbonate system calculations improved estimates of pH. However, low and medium salinity, organic‐rich samples demonstrated persistent offsets in calculated pH, even using dissolved inorganic carbon and CO2partial pressure as inputs. These offsets show the ongoing challenge of carbonate system intercomparisons in organic rich systems whereby new techniques and further investigations are needed to fully account for OrgAlk in TA titrations. 
    more » « less
  4. Summary Traditionally, leaves were thought to be supplied withCO2for photosynthesis by the atmosphere and respiration. Recent studies, however, have shown that the xylem also transports a significant amount of inorganic carbon into leaves through the bulk flow of water. However, little is known about the dynamics and proportion of xylem‐transportedCO2that is assimilated, vs simply lost to transpiration.Cut leaves ofPopulus deltoidesandBrassica napuswere placed in eitherKCl or one of three [NaH13CO3] solutions dissolved in water to simultaneously measure the assimilation and the efflux of xylem‐transportedCO2exiting the leaf across light andCO2response curves in real‐time using a tunable diode laser absorption spectroscope.The rates of assimilation and efflux of xylem‐transportedCO2increased with increasing xylem [13CO2*] and transpiration. Under saturating irradiance, rates of assimilation using xylem‐transportedCO2accounted forc.2.5% of the total assimilation in both species in the highest [13CO2*].The majority of xylem‐transportedCO2is assimilated, and efflux is small compared to respiration. Assimilation of xylem‐transportedCO2comprises a small portion of total photosynthesis, but may be more important whenCO2is limiting. 
    more » « less
  5. Summary High concentrations of dissolved inorganic carbon in stems of herbaceous and woody C3plants exit leaves in the dark. In the light, C3species use a small portion of xylem‐transported CO2for leaf photosynthesis. However, it is not known if xylem‐transported CO2will exit leaves in the dark or be used for photosynthesis in the light in Kranz‐type C4plants.Cut leaves ofAmaranthus hypochondriacuswere placed in one of three solutions of [NaH13CO3] dissolved in KCl water to measure the efflux of xylem‐transported CO2exiting the leaf in the dark or rates of assimilation of xylem‐transported CO2* in the light, in real‐time, using a tunable diode laser absorption spectroscope.In the dark, the efflux of xylem‐transported CO2increased with increasing rates of transpiration and [13CO2*]; however, rates of13CeffluxinA. hypochondriacuswere lower compared to C3species. In the light,A. hypochondriacusfixed nearly 75% of the xylem‐transported CO2supplied to the leaf.Kranz anatomy and biochemistry likely influence the efflux of xylem‐transported CO2out of cut leaves ofA. hypochondriacusin the dark, as well as the use of xylem‐transported CO2* for photosynthesis in the light. Thus increasing the carbon use efficiency of Kranz‐type C4species over C3species. 
    more » « less