skip to main content


Title: Atomic hydrogen shows its true colours: correlations between H  i and galaxy colour in simulations
ABSTRACT

Intensity mapping experiments are beginning to measure the spatial distribution of neutral atomic hydrogen H i to constrain cosmological parameters and the large-scale distribution of matter. However, models of the behaviour of H i as a tracer of matter are complicated by galaxy evolution. In this work, we examine the clustering of H i in relation to galaxy colour, stellar mass, and H i mass in IllustrisTNG at z  = 0, 0.5, and 1. We compare the H i-red and H i-blue galaxy cross-power spectra, finding that H i-red has an amplitude 1.5 times greater than H i-blue at large scales. The cross-power spectra intersect at ≈3 Mpc in real space and ≈10 Mpc in redshift space, consistent with z ≈ 0 observations. We show that H i clustering increases with galaxy H i mass and depends weakly on detection limits in the range MH i ≤ 108 M⊙. In terms of M⋆, we find massive blue galaxies cluster more than less massive ones. Massive red galaxies, however, cluster the weakest amongst red galaxies. These opposing trends arise from central-satellite compositions. Despite these M⋆ trends, we find that the cross-power spectra are largely insensitive to detection limits in galaxy surveys. Counter-intuitively, all auto and cross-power spectra for red and blue galaxies and H i decrease with time at all scales. We demonstrate that processes associated with quenching contribute to this trend. The complex interplay between H i and galaxies underscores the importance of understanding baryonic effects when interpreting the large-scale clustering of H i, blue, and red galaxies at z ≤ 1.

 
more » « less
PAR ID:
10507348
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
531
Issue:
1
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 450-467
Size(s):
p. 450-467
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    A sample of 279 massive red spirals was selected optically by Guo et al., among which 166 galaxies have been observed by the ALFALFA survey. In this work, we observe H i content of the rest 113 massive red spiral galaxies using the Five-hundred-meter Aperture Spherical radio Telescope (FAST). 75 of the 113 galaxies have H i detection with a signal-to-noise ratio (S/N) greater than 4.7. Compared with the red spirals in the same sample that have been observed by the ALFALFA survey, galaxies observed by FAST have on average a higher S/N, and reach to a lower H i mass. To investigate why many red spirals contain a significant amount of H i mass, we check colour profiles of the massive red spirals using images observed by the DESI Legacy Imaging Surveys. We find that galaxies with H i detection have bluer outer discs than the galaxies without H i detection, for both ALFALFA and FAST samples. For galaxies with H i detection, there exists a clear correlation between galaxy H i mass and g-r colour at outer radius: galaxies with higher H i masses have bluer outer discs. The results indicate that optically selected massive red spirals are not fully quenched, and the H i gas observed in many of the galaxies may exist in their outer blue discs.

     
    more » « less
  2. ABSTRACT

    Extracting information from the total matter power spectrum with the precision needed for upcoming cosmological surveys requires unraveling the complex effects of galaxy formation processes on the distribution of matter. We investigate the impact of baryonic physics on matter clustering at z = 0 using a library of power spectra from the Cosmology and Astrophysics with MachinE Learning Simulations project, containing thousands of $(25\, h^{-1}\, {\rm Mpc})^3$ volume realizations with varying cosmology, initial random field, stellar and active galactic nucleus (AGN) feedback strength and subgrid model implementation methods. We show that baryonic physics affects matter clustering on scales $k \gtrsim 0.4\, h\, \mathrm{Mpc}^{-1}$ and the magnitude of this effect is dependent on the details of the galaxy formation implementation and variations of cosmological and astrophysical parameters. Increasing AGN feedback strength decreases halo baryon fractions and yields stronger suppression of power relative to N-body simulations, while stronger stellar feedback often results in weaker effects by suppressing black hole growth and therefore the impact of AGN feedback. We find a broad correlation between mean baryon fraction of massive haloes (M200c > 1013.5 M⊙) and suppression of matter clustering but with significant scatter compared to previous work owing to wider exploration of feedback parameters and cosmic variance effects. We show that a random forest regressor trained on the baryon content and abundance of haloes across the full mass range 1010 ≤ Mhalo/M⊙<1015 can predict the effect of galaxy formation on the matter power spectrum on scales k = 1.0–20.0 $h\, \mathrm{Mpc}^{-1}$.

     
    more » « less
  3. Abstract Using stellar population synthesis models to infer star formation histories (SFHs), we analyze photometry and spectroscopy of a large sample of quiescent galaxies that are members of Sunyaev–Zel’dovich (SZ)-selected galaxy clusters across a wide range of redshifts. We calculate stellar masses and mass-weighted ages for 837 quiescent cluster members at 0.3 < z < 1.4 using rest-frame optical spectra and the Python-based Prospector framework, from 61 clusters in the SPT-GMOS Spectroscopic Survey (0.3 < z < 0.9) and three clusters in the SPT Hi-z cluster sample (1.25 < z < 1.4). We analyze spectra of subpopulations divided into bins of redshift, stellar mass, cluster mass, and velocity-radius phase-space location, as well as by creating composite spectra of quiescent member galaxies. We find that quiescent galaxies in our data set sample a diversity of SFHs, with a median formation redshift (corresponding to the lookback time from the redshift of observation to when a galaxy forms 50% of its mass, t 50 ) of z = 2.8 ± 0.5, which is similar to or marginally higher than that of massive quiescent field and cluster galaxy studies. We also report median age–stellar mass relations for the full sample (age of the universe at t 50 (Gyr) = 2.52 (±0.04)–1.66 (±0.12) log 10 ( M /10 11 M ⊙ )) and recover downsizing trends across stellar mass; we find that massive galaxies in our cluster sample form on aggregate ∼0.75 Gyr earlier than lower-mass galaxies. We also find marginally steeper age–mass relations at high redshifts, and report a bigger difference in formation redshifts across stellar mass for fixed environment, relative to formation redshifts across environment for fixed stellar mass. 
    more » « less
  4. ABSTRACT

    Red geysers are a specific type of quiescent galaxy, denoted by twin jets emerging from their galactic centres. These bisymmetric jets possibly inject energy and heat into the surrounding material, effectively suppressing star formation by stabilizing cool gas. In order to confirm the presence and evolutionary consequences of these jets, this paper discusses the scaling, stacking, and conversion of 21-cm H i flux data sourced from the H i-MaNGA survey into H i gas-to-stellar mass (G/S) spectra. Our samples were dominated by non-detections, or galaxies with weak H i signals, and consequently by H i upper limits. The stacking technique discussed successfully resolved emission features in both the red geyser G/S spectrum and the control sample G/S spectrum. From these stacked spectra, we find that on average, red geyser galaxies have G/S of 0.086 ± 0.011 (random) + 0.029 (systematic), while non-red geyser galaxies of similar stellar mass have a G/S ratio of 0.039 ± 0.018 (random) + 0.013 (systematic). Therefore, we find no statistically significant evidence that the H i content of red geysers is different from the general quiescent population.

     
    more » « less
  5. Abstract

    Early data from the James Webb Space Telescope (JWST) have revealed a bevy of high-redshift galaxy candidates with unexpectedly high stellar masses. An immediate concern is the consistency of these candidates with galaxy formation in the standardΛCDM cosmological model, wherein the stellar mass (M) of a galaxy is limited by the available baryonic reservoir of its host dark matter halo. The mass function of dark matter haloes therefore imposes an absolute upper limit on the number densityn(>M, z) and stellar mass densityρ(>M, z) of galaxies more massive thanMat any epochz. Here I show that the most massive galaxy candidates in JWST observations atz ≈ 7–10 lie at the very edge of these limits, indicating an important unresolved issue with the properties of galaxies derived from the observations, how galaxies form at early times inΛCDM or within this standard cosmology itself.

     
    more » « less