skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rational Design of Improved Ru Containing Fe‐Based Metal‐Organic Framework (MOF) Photoanode for Artificial Photosynthesis
Abstract Metal‐Organic Frameworks (MOFs) recently emerged as a new platform for the realization of integrated devices for artificial photosynthesis. However, there remain few demonstrations of rational tuning of such devices for improved performance. Here, a fast molecular water oxidation catalyst working via water nucleophilic attack is integrated into the MOF MIL‐142, wherein Fe3O nodes absorb visible light, leading to charge separation. Materials are characterized by a range of structural and spectroscopic techniques. New, [Ru(tpy)(Qc)(H2O)]+(tpy = 2,2′:6′,2″‐terpyridine and Qc = 8‐quinolinecarboxylate)‐doped Fe MIL‐142 achieved a high photocurrent (1.6 × 10−3A·cm−2) in photo‐electrocatalytic water splitting at pH = 1. Unassisted photocatalytic H2evolution is also reported with Pt as the co‐catalyst (4.8 µmol g−1min−1). The high activity of this new system enables hydrogen gas capture from an easy‐to‐manufacture, scaled‐up prototype utilizing MOF deposited on FTO glass as a photoanode. These findings provide insights for the development of MOF‐based light‐driven water‐splitting assemblies utilizing a minimal amount of precious metals and Fe‐based photosensitizers.  more » « less
Award ID(s):
2155060
PAR ID:
10507373
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
20
Issue:
37
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Catalytic water oxidation is an important process for the development of clean energy solutions and energy storage. Despite the significant number of reports on active catalysts, systematic control of the catalytic activity remains elusive. In this study, descriptors are explored that can be correlated with catalytic activity. [Ru(tpy)(pic)2(H2O)](NO3)2and [Ru(EtO‐tpy)(pic)2(H2O)](NO3)2(where tpy=2,2′ : 6′,2“‐terpyridine, EtO‐tpy=4′‐(ethoxy)‐2,2′:6′,2”‐terpyridine, pic=4‐picoline) are synthesized and characterized by NMR, UV/Vis, EPR, resonance Raman, and X‐ray absorption spectroscopy, and electrochemical analysis. Addition of the ethoxy group increases the catalytic activity in chemically driven and photocatalytic water oxidation. Thus, the effect of the electron‐donating group known for the [Ru(tpy)(bpy)(H2O)]2+family is transferable to architectures with a tpy ligandtransto the Ru‐oxo unit. Under catalytic conditions, [Ru(EtO‐tpy)(pic)2(H2O)](NO3)2displays new spectroscopic signals tentatively assigned to a peroxo intermediate. Reaction pathways were analyzed by using DFT calculations. [Ru(EtO‐tpy)(pic)2(H2O)](NO3)2is found to be one of the most active catalysts functioning by a water nucleophilic attack mechanism. 
    more » « less
  2. Abstract Understanding hydrogen dissolution mechanisms in bridgmanite (Bgm), the most abundant mineral in the lower mantle, is essential for understanding water storage and rheological and transport properties in the region. However, interpretations of O‐H bands in Fourier transform infrared spectroscopy (FTIR) spectra of Bgm crystals remain uncertain. We conducted density functional theory (DFT) calculations on vibrational characteristics of O‐H dipoles and performed polarized FTIR measurements to address this issue. DFT calculations for four substitution models—Mg vacancies, Si vacancies, Al3+ + H+substitution for Si4+, and Al substitution with Mg vacancies—reveal distinct O‐H bands with different polarizations. Deconvolution of polarized FTIR spectra on Mg0.88Fe2+0.035Fe3+0.065Al0.14Si0.90O3and Mg0.95Fe2+0.033Fe3+0.027Al0.04Si0.96O3crystals shows five major O‐H bands with distinct polarizations along principal crystallographic axes. These experimental and calculated results attribute O‐H bands centered at 3,463–3,480, 2,913–2,924, and 2,452–2,470 cm−1to Mg vacancies, Si vacancies, and Al3+ + H+substitution for Si4+, respectively. The total absorbance coefficient of bridgmanite was calculated to be 82,702(6,217) L/mol/cm2. Mg and Si vacancies account for 43%–74% of the total water content, making them dominant hydrogen dissolution mechanisms in Bgm. The band frequencies for the Mg and Si vacancies in Bgm are drastically different from those in olivine and ringwoodite, corresponding to the significant changes in O‐H bond strengths and in the Si and Mg coordination environments from upper‐mantle to lower‐mantle minerals. These results highlight the need to incorporate hydrogen dissolution mechanisms in Bgm for understanding electrical conductivity and rheology of the lower mantle. 
    more » « less
  3. Abstract Alkaline iron (Fe) batteries are attractive due to the high abundance, low cost, and multiple valent states of Fe but show limited columbic efficiency and storage capacity when forming electrochemically inert Fe3O4on discharging and parasitic H2on charging. Herein, sodium silicate is found to promote Fe(OH)2/FeOOH against Fe(OH)2/Fe3O4conversions. Electrochemical experiments,operandoX‐ray characterization, and atomistic simulations reveal that improved Fe(OH)2/FeOOH conversion originates from (i) strong interaction between sodium silicate and iron oxide and (ii) silicate‐induced strengthening of hydrogen‐bond networks in electrolytes that inhibits water transport. Furthermore, the silicate additive suppresses hydrogen evolution by impairing energetics of water dissociation and hydroxyl de‐sorption on iron surfaces. This new silicate‐assisted redox chemistry mitigates H2and Fe3O4formation, improving storage capacity (199 mAh g−1in half‐cells) and coulombic efficiency (94 % after 400 full‐cell cycles), paving a path to realizing green battery systems built from earth‐abundant materials. 
    more » « less
  4. Abstract The reduction of dioxygen to produce selectively H2O2or H2O is crucial in various fields. While platinum‐based materials excel in 4H+/4eoxygen reduction reaction (ORR) catalysis, cost and resource limitations drive the search for cost‐effective and abundant transition metal catalysts. It is thus of great importance to understand how the selectivity and efficiency of 3d‐metal ORR catalysts can be tuned. In this context, we report on a Co complex supported by a bisthiolate N2S2‐donor ligand acting as a homogeneous ORR catalyst in acetonitrile solutions both in the presence of a one‐electron reducing agent (selectivity for H2O of 93 % and TOFi=3 000 h−1) and under electrochemically‐assisted conditions (0.81 V <η<1.10 V, selectivity for H2O between 85 % and 95 %). Interestingly, such a predominant 4H+/4epathway for Co‐based ORR catalysts is rare, highlighting the key role of the thiolate donor ligand. Besides, the selectivity of this Co catalyst under chemical ORR conditions is inverse with respect to the Mn and Fe catalysts supported by the same ligand, which evidences the impact of the nature of the metal ion on the ORR selectivity. 
    more » « less
  5. Abstract A glut of dinitrogen‐derived ammonia (NH3) over the past century has resulted in a heavily imbalanced nitrogen cycle and consequently, the large‐scale accumulation of reactive nitrogen such as nitrates in our ecosystems has led to detrimental environmental issues. Electrocatalytic upcycling of waste nitrogen back into NH3holds promise in mitigating these environmental impacts and reducing reliance on the energy‐intensive Haber–Bosch process. Herein, we report a high‐performance electrolyzer using an ultrahigh alkalinity electrolyte, NaOH−KOH−H2O, for low‐cost NH3electrosynthesis. At 3,000 mA/cm2, the device with a Fe−Cu−Ni ternary catalyst achieves an unprecedented faradaic efficiency (FE) of 92.5±1.5 % under a low cell voltage of 3.83 V; whereas at 1,000 mA/cm2, an FE of 96.5±4.8 % under a cell voltage of only 2.40 V was achieved. Techno‐economic analysis revealed that our device cuts the levelized cost of ammonia electrosynthesis by ~40 % ($30.68 for Fe−Cu−Ni vs. $48.53 for Ni foam per kmol‐NH3). The NaOH−KOH−H2O electrolyte together with the Fe−Cu−Ni ternary catalyst can enable the high‐throughput nitrate‐to‐ammonia applications for affordable and scalable real‐world wastewater treatments. 
    more » « less