skip to main content


Title: Tetraether archaeal lipids promote long‐term survival in extreme conditions
Abstract

The sole unifying feature of the incredibly diverse Archaea is their isoprenoid‐based ether‐linked lipid membranes. Unique lipid membrane composition, including an abundance of membrane‐spanning tetraether lipids, impart resistance to extreme conditions. Many questions remain, however, regarding the synthesis and modification of tetraether lipids and how dynamic changes to archaeal lipid membrane composition support hyperthermophily. Tetraether membranes, termed glycerol dibiphytanyl glycerol tetraethers (GDGTs), are generated by tetraether synthase (Tes) by joining the tails of two bilayer lipids known as archaeol. GDGTs are often further specialized through the addition of cyclopentane rings by GDGT ring synthase (Grs). A positive correlation between relative GDGT abundance and entry into stationary phase growth has been observed, but the physiological impact of inhibiting GDGT synthesis has not previously been reported. Here, we demonstrate that the model hyperthermophileThermococcus kodakarensisremains viable when Tes (TK2145) or Grs (TK0167) are deleted, permitting phenotypic and lipid analyses at different temperatures. The absence of cyclopentane rings in GDGTs does not impact growth inT. kodakarensis, but an overabundance of rings due to ectopic Grs expression is highly fitness negative at supra‐optimal temperatures. In contrast, deletion of Tes resulted in the loss of all GDGTs, cyclization of archaeol, and loss of viability upon transition to the stationary phase in this model archaea. These results demonstrate the critical roles of highly specialized, dynamic, isoprenoid‐based lipid membranes for archaeal survival at high temperatures.

 
more » « less
NSF-PAR ID:
10507380
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Microbiology
Volume:
121
Issue:
5
ISSN:
0950-382X
Format(s):
Medium: X Size: p. 882-894
Size(s):
["p. 882-894"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Archaea adjust the number of cyclopentane rings in their glycerol dibiphytanyl glycerol tetraether (GDGT) membrane lipids as a homeostatic response to environmental stressors such as temperature, pH, and energy availability shifts. However, archaeal expression patterns that correspond with changes in GDGT composition are less understood. Here we characterize the acid and cold stress responses of the thermoacidophilic crenarchaeonSaccharolobus islandicusREY15A using growth rates, core GDGT lipid profiles, transcriptomics and proteomics. We show that both stressors result in impaired growth, lower average GDGT cyclization, and differences in gene and protein expression. Transcription data revealed differential expression of the GDGT ring synthasegrsBin response to both acid stress and cold stress. Although the GDGT ring synthase encoded bygrsBforms highly cyclized GDGTs with ≥5 ring moieties,S. islandicus grsBupregulation under acidic pH conditions did not correspond with increased abundances of highly cyclized GDGTs. Our observations highlight the inability to predict GDGT changes from transcription data alone. Broader analysis of transcriptomic data revealed thatS. islandicusdifferentially expresses many of the same transcripts in response to both acid and cold stress. These included upregulation of several biosynthetic pathways and downregulation of oxidative phosphorylation and motility. Transcript responses specific to either of the two stressors tested here included upregulation of genes related to proton pumping and molecular turnover in acid stress conditions and upregulation of transposases in cold stress conditions. Overall, our study provides a comprehensive understanding of the GDGT modifications and differential expression characteristic of the acid stress and cold stress responses inS. islandicus.

     
    more » « less
  2. Glycerol dibiphytanyl glycerol tetraethers (GDGTs) are distinctive archaeal membrane-spanning lipids with up to eight cyclopentane rings and/or one cyclohexane ring. The number of rings added to the GDGT core structure can vary as a function of environmental conditions, such as changes in growth temperature. This physiological response enables cyclic GDGTs preserved in sediments to be employed as proxies for reconstructing past global and regional temperatures and to provide fundamental insights into ancient climate variability. Yet, confidence in GDGT-based paleotemperature proxies is hindered by uncertainty concerning the archaeal communities contributing to GDGT pools in modern environments and ambiguity in the environmental and physiological factors that affect GDGT cyclization in extant archaea. To properly constrain these uncertainties, a comprehensive understanding of GDGT biosynthesis is required. Here, we identify 2 GDGT ring synthases, GrsA and GrsB, essential for GDGT ring formation in Sulfolobus acidocaldarius . Both proteins are radical S-adenosylmethionine proteins, indicating that GDGT cyclization occurs through a free radical mechanism. In addition, we demonstrate that GrsA introduces rings specifically at the C-7 position of the core GDGT lipid, while GrsB cyclizes at the C-3 position, suggesting that cyclization patterns are differentially controlled by 2 separate enzymes and potentially influenced by distinct environmental factors. Finally, phylogenetic analyses of the Grs proteins reveal that marine Thaumarchaeota, and not Euryarchaeota, are the dominant source of cyclized GDGTs in open ocean settings, addressing a major source of uncertainty in GDGT-based paleotemperature proxy applications. 
    more » « less
  3. Spear, John R. (Ed.)
    ABSTRACT

    The degree of cyclization, or ring index (RI), in archaeal glycerol dibiphytanyl glycerol tetraether (GDGT) lipids was long thought to reflect homeoviscous adaptation to temperature. However, more recent experiments show that other factors (e.g., pH, growth phase, and energy flux) can also affect membrane composition. The main objective of this study was to investigate the effect of carbon and energy metabolism on membrane cyclization. To do so, we cultivatedAcidianussp. DS80, a metabolically flexible and thermoacidophilic archaeon, on different electron donor, acceptor, and carbon source combinations (S0/Fe3+/CO2, H2/Fe3+/CO2, H2/S0/CO2, or H2/S0/glucose). We show that differences in energy and carbon metabolism can result in over a full unit of change in RI in the thermoacidophileAcidianussp. DS80. The patterns in RI correlated with the normalized electron transfer rate between the electron donor and acceptor and did not always align with thermodynamic predictions of energy yield. In light of this, we discuss other factors that may affect the kinetics of cellular energy metabolism: electron transfer chain (ETC) efficiency, location of ETC reaction components (cytoplasmicvs.extracellular), and the physical state of electron donors and acceptors (gasvs.solid). Furthermore, the assimilation of a more reduced form of carbon during heterotrophy appears to decrease the demand for reducing equivalents during lipid biosynthesis, resulting in lower RI. Together, these results point to the fundamental role of the cellular energy state in dictating GDGT cyclization, with those cells experiencing greater energy limitation synthesizing more cyclized GDGTs.

    IMPORTANCE

    Some archaea make unique membrane-spanning lipids with different numbers of five- or six-membered rings in the core structure, which modulate membrane fluidity and permeability. Changes in membrane core lipid composition reflect the fundamental adaptation strategies of archaea in response to stress, but multiple environmental and physiological factors may affect the needs for membrane fluidity and permeability. In this study, we tested howAcidianussp. DS80 changed its core lipid composition when grown with different electron donor/acceptor pairs. We show that changes in energy and carbon metabolisms significantly affected the relative abundance of rings in the core lipids of DS80. These observations highlight the need to better constrain metabolic parameters, in addition to environmental factors, which may influence changes in membrane physiology in Archaea. Such consideration would be particularly important for studying archaeal lipids from habitats that experience frequent environmental fluctuations and/or where metabolically diverse archaea thrive.

     
    more » « less
  4. Abstract

    Many Archaea produce membrane‐spanning lipids that enable life in extreme environments. These isoprenoid glycerol dibiphytanyl glycerol tetraethers (GDGTs) may contain up to eight cyclopentyl and one cyclohexyl ring, where higher degrees of cyclization are associated with more acidic, hotter or energy‐limited conditions. Recently, the genes encoding GDGT ring synthases,grsAB, were identified in two Sulfolobaceae; however, the distribution and abundance ofgrshomologs across environments inhabited by these and related organisms remain a mystery. To address this, we examined the distribution ofgrshomologs in relation to environmental temperature and pH, from thermal springs across Earth, where sequences derive from metagenomes, metatranscriptomes, single‐cell and cultivar genomes. The abundance ofgrshomologs shows a strong negative correlation to pH, but a weak positive correlation to temperature. Archaeal genomes and metagenome‐assembled genomes (MAGs) that carry two or moregrscopies are more abundant in low pH springs. We also findgrsin 12 archaeal classes, with the most representatives in Thermoproteia, followed by MAGs of the uncultured Korarchaeia, Bathyarchaeia and Hadarchaeia, while several Nitrososphaeria encodes >3 copies. Our findings highlight the key role ofgrs‐catalysed lipid cyclization in archaeal diversification across hot and acidic environments.

     
    more » « less
  5. Abstract Glycerol dibiphytanyl glycerol tetraethers (GDGTs) are archaeal monolayer membrane lipids that can provide a competitive advantage in extreme environments. Here, we identify a radical SAM protein, tetraether synthase (Tes), that participates in the synthesis of GDGTs. Attempts to generate a tes-deleted mutant in Sulfolobus acidocaldarius were unsuccessful, suggesting that the gene is essential in this organism. Heterologous expression of tes homologues leads to production of GDGT and structurally related lipids in the methanogen Methanococcus maripaludis (which otherwise does not synthesize GDGTs and lacks a tes homolog, but produces a putative GDGT precursor, archaeol). Tes homologues are encoded in the genomes of many archaea, as well as in some bacteria, in which they might be involved in the synthesis of bacterial branched glycerol dialkyl glycerol tetraethers. 
    more » « less