skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on June 1, 2025

Title: Methylated chalcones are required for rhizobial nod gene induction in the Medicago truncatula rhizosphere
Summary

Legume nodulation requires the detection of flavonoids in the rhizosphere by rhizobia to activate their production of Nod factor countersignals. Here we investigated the flavonoids involved in nodulation ofMedicago truncatula.

We biochemically characterized five flavonoid‐O‐methyltransferases (OMTs) and a lux‐basednodgene reporter was used to investigate the response ofSinorhizobium medicaeNodD1 to various flavonoids.

We found that chalcone‐OMT 1 (ChOMT1) and ChOMT3, but not OMT2, 4, and 5, were able to produce 4,4′‐dihydroxy‐2′‐methoxychalcone (DHMC). The bioreporter responded most strongly to DHMC, while isoflavones important for nodulation of soybean (Glycine max) showed no activity. Mutant analysis revealed that loss of ChOMT1 strongly reduced DHMC levels. Furthermore,chomt1andomt2showed strongly reduced bioreporter luminescence in their rhizospheres. In addition, loss of both ChOMT1 and ChOMT3 reduced nodulation, and this phenotype was strengthened by the further loss of OMT2.

We conclude that: the loss of ChOMT1 greatly reduces root DHMC levels; ChOMT1 or OMT2 are important fornodgene activation in the rhizosphere; and ChOMT1/3 and OMT2 promote nodulation. Our findings suggest a degree of exclusivity in the flavonoids used for nodulation inM. truncatulacompared to soybean, supporting a role for flavonoids in rhizobial host range.

 
more » « less
Award ID(s):
2233714
PAR ID:
10507437
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
New Phytologist
Volume:
242
Issue:
5
ISSN:
0028-646X
Page Range / eLocation ID:
2195 to 2206
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Rhizobial lipochitooligosaccharidic Nod factors (NFs), specified bynodgenes, are the primary determinants of host specificity in the legume–Rhizobia symbiosis.

    We examined the nodulation ability ofMedicago truncatulacv Jemalong A17 andM. truncatulassp.tricyclaR108 with theSinorhizobium meliloti nodF/nodLmutant, which produces modified NFs. We then applied genetic and functional approaches to study the genetic basis and mechanism of nodulation of R108 by this mutant.

    We show that thenodF/nodLmutant can nodulate R108 but not A17. Using genomics and reverse genetics, we identified a newly evolved, chimeric LysM receptor‐like kinase gene in R108,LYK2bis, which is responsible for the phenotype and can allow A17 to gain nodulation with thenodF/nodLmutant. We found thatLYK2bisis involved in nodulation by mutants producing nonO‐acetylated NFs and interacts with the key receptor protein NFP. Many, but not all, naturalS. melilotiandS. medicaestrains tested requireLYK2bisfor efficient nodulation of R108.

    Our findings reveal that a newly evolved gene in R108,LYK2bis, extends nodulation specificity to mutants producing nonO‐acetylated NFs and is important for nodulation by many naturalSinorhizobia. Evolution of this gene may present an adaptive advantage to allow nodulation by a greater variety of strains.

     
    more » « less
  2. Summary

    Establishment of symbiosis between plants and arbuscular mycorrhizal (AM) fungi depends on fungal chitooligosaccharides (COs) and lipo‐chitooligosaccharides (LCOs). The latter are also produced by nitrogen‐fixing rhizobia to induce nodules on leguminous roots. However, host enzymes regulating structure and levels of these signals remain largely unknown.

    Here, we analyzed the expression of a β‐N‐acetylhexosaminidase gene ofMedicago truncatula(MtHEXO2) and biochemically characterized the enzyme. Mutant analysis was performed to study the role ofMtHEXO2during symbiosis.

    We found that expression ofMtHEXO2is associated with AM symbiosis and nodulation.MtHEXO2expression in the rhizodermis was upregulated in response to applied chitotetraose, chitoheptaose, and LCOs.M. truncatulamutants deficient in symbiotic signaling did not show induction ofMtHEXO2. Subcellular localization analysis indicated that MtHEXO2 is an extracellular protein. Biochemical analysis showed that recombinant MtHEXO2 does not cleave LCOs but can degrade COs intoN‐acetylglucosamine (GlcNAc).Hexo2mutants exhibited reduced colonization by AM fungi; however, nodulation was not affected inhexo2mutants.

    In conclusion, we identified an enzyme, which inactivates COs and promotes the AM symbiosis. We hypothesize that GlcNAc produced by MtHEXO2 may function as a secondary symbiotic signal.

     
    more » « less
  3. Nod factors secreted by nitrogen-fixing rhizobia are lipo-chitooligosaccharidic signals required for establishment of the nodule symbiosis with legumes. InMedicago truncatula, the Nod factor hydrolase 1 (MtNFH1) was found to cleave Nod factors ofSinorhizobium meliloti. Here, we report that the class V chitinase MtCHIT5b ofM. truncatulaexpressed inEscherichia colican release lipodisaccharides from Nod factors. Analysis ofM. truncatulamutant plants indicated that MtCHIT5b, together with MtNFH1, degradesS. melilotiNod factors in the rhizosphere.MtCHIT5bexpression was induced by treatment of roots with purified Nod factors or inoculation with rhizobia. MtCHIT5b with a fluorescent tag was detected in the infection pocket of root hairs. Nodulation of aMtCHIT5bknockout mutant was not significantly altered whereas overexpression ofMtCHIT5bresulted in fewer nodules. Reduced nodulation was observed whenMtCHIT5bandMtNFH1were simultaneously silenced in RNA interference experiments. Overall, this study shows that nodule formation ofM. truncatulais regulated by a second Nod factor cleaving hydrolase in addition to MtNFH1.

     
    more » « less
  4. Summary

    Symbiotic nitrogen fixation in legumes is mediated by an interplay of signaling processes between plant hosts and rhizobial symbionts. In legumes, several secreted protein families have undergone expansions and play key roles in nodulation. Thus, identifying lineage‐specific expansions (LSEs) of nodulation‐associated genes can be a strategy to discover candidate gene families.

    Using bioinformatic tools, we identified 13LSEs of nodulation‐related secreted protein families, each unique to eitherGlycine,ArachisorMedicagolineages. In theMedicagolineage, nodule‐specific Polycystin‐1, Lipoxygenase, Alpha Toxin (PLAT) domain proteins (NPDs) expanded to five members. We examinedNPDfunction usingCRISPR/Cas9 multiplex genome editing to createMedicago truncatulaNPDknockout lines, targeting one to fiveNPDgenes.

    Mutant lines with differing combinations ofNPDgene inactivations had progressively smaller nodules, earlier onset of nodule senescence, or ineffective nodules compared to the wild‐type control. Double‐ and triple‐knockout lines showed dissimilar nodulation phenotypes but coincided in upregulation of aDHHC‐type zinc finger and an aspartyl protease gene, possible candidates for the observed disturbance of proper nodule function.

    By postulating that gene family expansions can be used to detect candidate genes, we identified a family of nodule‐specificPLATdomain proteins and confirmed that they play a role in successful nodule formation.

     
    more » « less
  5. Summary

    Genome editing is a revolution in biotechnology for crop improvement with the final product lacking transgenes. However, most derived traits have been generated through edits that create gene knockouts.

    Our study pioneers a novel approach, utilizing gene editing to enhance gene expression by eliminating transcriptional repressor binding motifs.

    Building upon our prior research demonstrating the protein‐boosting effects of the transcription factor NF‐YC4, we identified conserved motifs targeted by RAV and WRKY repressors in theNF‐YC4promoters from rice (Oryza sativa) and soybean (Glycine max). Leveraging CRISPR/Cas9 technology, we deleted these motifs, resulting in reduced repressor binding and increasedNF‐YC4expression. This strategy led to increased protein content and reduced carbohydrate levels in the edited rice and soybean plants, with rice exhibiting up to a 68% increase in leaf protein and a 17% increase in seed protein, and soybean showing up to a 25% increase in leaf protein and an 11% increase in seed protein.

    Our findings provide a blueprint for enhancing gene expression through precise genomic deletions in noncoding sequences, promising improved agricultural productivity and nutritional quality.

     
    more » « less