skip to main content

This content will become publicly available on March 1, 2025

Title: AGN STORM 2. V. Anomalous Behavior of the C iv Light Curve of Mrk 817*

An intensive reverberation mapping campaign of the Seyfert 1 galaxy Mrk 817 using the Cosmic Origins Spectrograph on the Hubble Space Telescope revealed significant variations in the response of broad UV emission lines to fluctuations in the continuum emission. The response of the prominent UV emission lines changes over an ∼60 day duration, resulting in distinctly different time lags in the various segments of the light curve over the 14 month observing campaign. One-dimensional echo-mapping models fit these variations if a slowly varying background is included for each emission line. These variations are more evident in the Civlight curve, which is the line least affected by intrinsic absorption in Mrk 817 and least blended with neighboring emission lines. We identify five temporal windows with a distinct emission-line response, and measure their corresponding time delays, which range from 2 to 13 days. These temporal windows are plausibly linked to changes in the UV and X-ray obscuration occurring during these same intervals. The shortest time lags occur during periods with diminishing obscuration, whereas the longest lags occur during periods with rising obscuration. We propose that the obscuring outflow shields the broad UV lines from the ionizing continuum. The resulting change in the spectral energy distribution of the ionizing continuum, as seen by clouds at a range of distances from the nucleus, is responsible for the changes in the line response.

more » « less
Award ID(s):
1907290 1907208
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The AGN STORM 2 campaign is a large, multiwavelength reverberation mapping project designed to trace out the structure of Mrk 817 from the inner accretion disk to the broad emission line region and out to the dusty torus. As part of this campaign, Swift performed daily monitoring of Mrk 817 for approximately 15 months, obtaining observations in X-rays and six UV/optical filters. The X-ray monitoring shows that Mrk 817 was in a significantly fainter state than in previous observations, with only a brief flare where it reached prior flux levels. The X-ray spectrum is heavily obscured. The UV/optical light curves show significant variability throughout the campaign and are well correlated with one another, but uncorrelated with the X-rays. Combining the Swift UV/optical light curves with Hubble Space Telescope UV continuum light curves, we measure interband continuum lags,τ(λ), that increase with increasing wavelength roughly followingτ(λ) ∝λ4/3, the dependence expected for a geometrically thin, optically thick, centrally illuminated disk. Modeling of the light curves reveals a period at the beginning of the campaign where the response of the continuum is suppressed compared to later in the light curve—the light curves are not simple shifted and scaled versions of each other. The interval of suppressed response corresponds to a period of high UV line and X-ray absorption, and reduced emission line variability amplitudes. We suggest that this indicates a significant contribution to the continuum from the broad-line region gas that sees an absorbed ionizing continuum.

    more » « less
  2. Abstract We present the first results from the ongoing, intensive, multiwavelength monitoring program of the luminous Seyfert 1 galaxy Mrk 817. While this active galactic nucleus was, in part, selected for its historically unobscured nature, we discovered that the X-ray spectrum is highly absorbed, and there are new blueshifted, broad, and narrow UV absorption lines, which suggest that a dust-free, ionized obscurer located at the inner broad-line region partially covers the central source. Despite the obscuration, we measure UV and optical continuum reverberation lags consistent with a centrally illuminated Shakura–Sunyaev thin accretion disk, and measure reverberation lags associated with the optical broad-line region, as expected. However, in the first 55 days of the campaign, when the obscuration was becoming most extreme, we observe a de-coupling of the UV continuum and the UV broad emission-line variability. The correlation recovered in the next 42 days of the campaign, as Mrk 817 entered a less obscured state. The short C iv and Ly α lags suggest that the accretion disk extends beyond the UV broad-line region. 
    more » « less
  3. Abstract The AGN STORM 2 Collaboration targeted the Seyfert 1 galaxy Mrk 817 for a year-long multiwavelength, coordinated reverberation mapping campaign including Hubble Space Telescope, Swift, XMM-Newton, NICER, and ground-based observatories. Early observations with NICER and XMM revealed an X-ray state 10 times fainter than historical observations, consistent with the presence of a new dust-free, ionized obscurer. The following analysis of NICER spectra attributes variability in the observed X-ray flux to changes in both the column density of the obscurer by at least one order of magnitude ( N H ranges from 2.85 − 0.33 + 0.48 × 10 22 cm − 2 to 25.6 − 3.5 + 3.0 × 10 22 cm − 2 ) and the intrinsic continuum brightness (the unobscured flux ranges from 10 −11.8 to 10 −10.5 erg s −1 cm −2 ). While the X-ray flux generally remains in a faint state, there is one large flare during which Mrk 817 returns to its historical mean flux. The obscuring gas is still present at lower column density during the flare, but it also becomes highly ionized, increasing its transparency. Correlation between the column density of the X-ray obscurer and the strength of UV broad absorption lines suggests that the X-ray and UV continua are both affected by the same obscuration, consistent with a clumpy disk wind launched from the inner broad-line region. 
    more » « less
  4. Abstract We present reverberation mapping measurements for the prominent ultraviolet broad emission lines of the active galactic nucleus Mrk 817 using 165 spectra obtained with the Cosmic Origins Spectrograph on the Hubble Space Telescope. Our ultraviolet observations are accompanied by X-ray, optical, and near-infrared observations as part of the AGN Space Telescope and Optical Reverberation Mapping Program 2 (AGN STORM 2). Using the cross-correlation lag analysis method, we find significant correlated variations in the continuum and emission-line light curves. We measure rest-frame delayed responses between the far-ultraviolet continuum at 1180 Å and Ly α λ 1215 Å ( 10.4 − 1.4 + 1.6 days), N v λ 1240 Å ( 15.5 − 4.8 + 1.0 days), Si iv + ]O iv λ 1397 Å ( 8.2 − 1.4 + 1.4 days), C iv λ 1549 Å ( 11.8 − 2.8 + 3.0 days), and He ii λ 1640 Å ( 9.0 − 1.9 + 4.5 days) using segments of the emission-line profile that are unaffected by absorption and blending, which results in sampling different velocity ranges for each line. However, we find that the emission-line responses to continuum variations are more complex than a simple smoothed, shifted, and scaled version of the continuum light curve. We also measure velocity-resolved lags for the Ly α and C iv emission lines. The lag profile in the blue wing of Ly α is consistent with virial motion, with longer lags dominating at lower velocities, and shorter lags at higher velocities. The C iv lag profile shows the signature of a thick rotating disk, with the shortest lags in the wings, local peaks at ±1500 km s −1 , and a local minimum at the line center. The other emission lines are dominated by broad absorption lines and blending with adjacent emission lines. These require detailed models, and will be presented in future work. 
    more » « less
  5. The Space Telescope and Optical Reverberation Mapping Project (AGN STORM) on NGC 5548 in 2014 is one of the most intensive multi-wavelength AGN monitoring campaigns ever. For most of the campaign,the emission-line variations followed changes in the continuum with a time lag, as expected. However, the lines varied independently of the observed UV-optical continuum during a 60-70 day holiday, suggesting that unobserved changes to the ionizing continuum were present. To understand this remarkable phenomenon and to obtain an independent assessment of the ionizing continuum variations, we study the intrinsic absorption lines present in NGC 5548. We identify a novel cycle that reproduces the absorption line variability and thus identify the physics that allows the holiday to occur. In this cycle, variations in this obscurer’s line-of-sight covering factor modify the soft X-ray continuum, changing the ionization of helium. Ionizing radiation produced by recombining helium then affects the level of ionization of some ions seen by HST. In particular, high-ionization species are affected by changes in the obscurer covering factor, which does not affect the optical or UV continuum, so appear as uncorrelated changes, a “holiday”. It is likely that any other model which selectively changes the soft X-ray part of the continuum during the holiday can also explain the anomalous emission-line behavior observed. 
    more » « less