skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Empirical Models of the Hβ Broad Emission Line Gas Density Field
Abstract We present the second iteration of thecaramel-gascode, an empirical model of the broad-line region (BLR) gas density field. Building on the initial development and testing ofcaramel-gas, we expand the meaning of the model parameterα, which initially represented only the power-law index of the dependency of emissivity on radial distance. In this work, we test a more generalized radial power-law index,α, that also includes a description of the effective emitting size(s) of the BLR structure as a function of radial distance. We select a sample of 10 active galactic nuclei (AGN) from three different Lick AGN Monitoring Project campaigns to further validate thecaramel-gascode and test the generalized radial power-law index,α. Our results confirm that thecaramel-gasresults are in general agreement with the published results determined using the originalcaramelcode, further demonstrating that our forward modeling method is robust. We find that a positive radial power-law index is generally favored and propose three possible scenarios: (i) the BLR structure has increasing effective emitting size(s) at larger radial distances from the central source, (ii) emission is concentrated at the outer edges of the BLR, and (iii) stronger theoretical assumptions are needed to break the degeneracies inherent to the interpretation of reverberation mapping data in terms of underlying gas properties.  more » « less
Award ID(s):
1907208 1909297
PAR ID:
10507589
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
AAS
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
966
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The broad-line region (BLR) of active galactic nuclei (AGNs) traces gas close to the central supermassive black hole (BH). Recent reverberation mapping (RM) and interferometric spectro-astrometry data have enabled detailed investigations of the BLR structure and dynamics as well as estimates of the BH mass. These exciting developments have motivated comparative investigations of BLR structures using different broad emission lines. In this work, we have developed a method to simultaneously model multiple broad lines of the BLR from a single-epoch spectrum. We applied this method to the five strongest broad emission lines (Hα, Hβ, Hγ, Paβ, and He Iλ5876) in the UV-to-near-IR spectrum of NGC 3783, a nearby Type I AGN that has been well studied by RM and interferometric observations. Fixing the BH mass to the published value, we fit these line profiles simultaneously to constrain the BLR structure. We find that the differences between line profiles can be explained almost entirely as being due to different radial distributions of the line emission. We find that using multiple lines in this way also enables one to measure some important physical parameters, such as the inclination angle and virial factor of the BLR. The ratios of the derived BLR time lags are consistent with the expectation of theoretical model calculations and RM measurements. 
    more » « less
  2. null (Ed.)
    Using VLTI/GRAVITY and SINFONI data, we investigate the subparsec gas and dust structure around the nearby type 1 active galactic nucleus (AGN) hosted by NGC 3783. The K -band coverage of GRAVITY uniquely allows simultaneous analysis of the size and kinematics of the broad line region (BLR), the size and structure of the near-infrared(near-IR)-continuum-emitting hot dust, and the size of the coronal line region (CLR). We find the BLR, probed through broad Br γ emission, to be well described by a rotating, thick disc with a radial distribution of clouds peaking in the inner region. In our BLR model, the physical mean radius of 16 light-days is nearly twice the ten-day time-lag that would be measured, which closely matches the ten-day time-lag that has been measured by reverberation mapping. We measure a hot dust full-width at half-maximum (FWHM) size of 0.74 mas (0.14 pc) and further reconstruct an image of the hot dust, which reveals a faint (5% of the total flux) offset cloud that we interpret as an accreting or outflowing cloud heated by the central AGN. Finally, we directly measure the FWHM size of the nuclear CLR as traced by the [Ca  VIII ] and narrow Br γ line. We find a FWHM size of 2.2 mas (0.4 pc), fully in line with the expectation of the CLR located between the BLR and narrow line region. Combining all of these measurements together with larger scale near-IR integral field unit and mid-IR interferometry data, we are able to comprehensively map the structure and dynamics of gas and dust from 0.01 to 100 pc. 
    more » « less
  3. Abstract We present an analysis of the Hα-emitting ionized gas in the warm phase of the NGC 253 outflow using integral field spectroscopy from the Multi Unit Spectroscopic Explorer. In each spaxel, we decompose Hα, [Nii], and [Sii] emission lines into a system of up to three Gaussian components, accounting for the velocity contributions due to the disk and both intercepted walls of an outflow cone. In the approaching southern lobe of the outflow, we find maximum deprojected outflow velocities down to ∼−500 km s−1. Velocity gradients of this outflowing gas range from ∼−350 to −550 km s−1kpc−1with increasing distance from the nucleus. Additionally, [Nii]/Hαand [Sii]/Hαintegrated line ratios are suggestive of shocks as the dominant ionization source throughout the wind. Electron densities, inferred from the [Sii] doublet, peak at 2100 cm−3near the nucleus and reach ≲50 cm−3in the wind. Finally, at an uncertainty of 0.3 dex on the inferred mass of 4 × 105M, the mass-outflow rate of the Hα-emitting gas in the southern outflow lobe is ∼0.4Myr−1. This yields a mass-loading factor ofη ∼ 0.1 and a ∼2% starburst energy efficiency. 
    more » « less
  4. Abstract Fast empirical models of the broad emission line region (BLR) are a powerful tool to interpret velocity-resolved reverberation mapping (RM) data, estimate the mass of the supermassive black holes, and gain insight into its geometry and kinematics. Much of the effort so far has been devoted to describing the emissivity of one emission line at a time. We present here an alternative approach aimed at describing the underlying BLR gas distribution, by exploiting simple numerical recipes to connect it with emissivity. This approach is a step toward describing multiple emission lines originating from the same gas and allows us to clarify some issues related to the interpretation of RM data. We illustrate this approach—implemented in the code CARAMEL-gas —using three data sets covering the H β emission line (Mrk 50, Mrk 1511, Arp 151) that have been modeled using the emissivity-based version of the code. As expected, we find differences in the parameters describing the BLR gas and emissivity distribution, but the emissivity-weighted lag measurements and all other model parameters including black hole mass and overall BLR morphology and kinematics are consistent with the previous measurements. We also model the H α emission line for Arp 151 using both the gas- and emissivity-based BLR models. We find ionization stratification in the BLR with H α arising at larger radii than H β , while all other model parameters are consistent within the uncertainties. 
    more » « less
  5. Abstract We combine our dynamical modeling black-hole mass measurements from the Lick AGN Monitoring Project 2016 sample with measured cross-correlation time lags and line widths to recover individual scale factors, f , used in traditional reverberation-mapping analyses. We extend our sample by including prior results from Code for AGN Reverberation and Modeling of Emission Lines ( caramel ) studies that have utilized our methods. Aiming to improve the precision of black-hole mass estimates, as well as uncover any regularities in the behavior of the broad-line region (BLR), we search for correlations between f and other AGN/BLR parameters. We find (i) evidence for a correlation between the virial coefficient log 10 ( f mean , σ ) and black-hole mass, (ii) marginal evidence for a similar correlation between log 10 ( f rms , σ ) and black-hole mass, (iii) marginal evidence for an anticorrelation of BLR disk thickness with log 10 ( f mean , FWHM ) and log 10 ( f rms , FWHM ) , and (iv) marginal evidence for an anticorrelation of inclination angle with log 10 ( f mean , FWHM ) , log 10 ( f rms , σ ) , and log 10 ( f mean , σ ) . Last, we find marginal evidence for a correlation between line-profile shape, when using the root-mean-square spectrum, log 10 ( FWHM / σ ) rms , and the virial coefficient, log 10 ( f rms , σ ) , and investigate how BLR properties might be related to line-profile shape using caramel models. 
    more » « less