We present early results from the CO Mapping Array Project (COMAP) Galactic Plane Survey conducted between 2019 June and 2021 April, spanning 20° <
We present the SARAO MeerKAT Galactic Plane Survey (SMGPS), a 1.3 GHz continuum survey of almost half of the Galactic Plane (251° ≤l ≤ 358° and 2° ≤l ≤ 61° at |b| ≤ $1{_{.}^{\circ}}5$). SMGPS is the largest, most sensitive, and highest angular resolution 1 GHz survey of the plane yet carried out, with an angular resolution of 8 arcsec and a broad-band root-mean-square sensitivity of ∼10–20 μJy beam−1. Here, we describe the first publicly available data release from SMGPS which comprises data cubes of frequency-resolved images over 908–1656 MHz, power-law fits to the images, and broad-band zeroth moment integrated intensity images. A thorough assessment of the data quality and guidance for future usage of the data products are given. Finally, we discuss the tremendous potential of SMGPS by showcasing highlights of the Galactic and extragalactic science that it permits. These highlights include the discovery of a new population of non-thermal radio filaments; identification of new candidate supernova remnants, pulsar wind nebulae and planetary nebulae; improved radio/mid-infrared classification of rare luminous blue variables and discovery of associated extended radio nebulae; new radio stars identified by Bayesian cross-matching techniques; the realization that many of the largest radio-quiet Wide-field Infrared Survey Explorer (WISE) H ii region candidates are not true H ii regions; and a large sample of previously undiscovered background H i galaxies in the Zone of Avoidance.
more » « less- PAR ID:
- 10507610
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 531
- Issue:
- 1
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 649-681
- Size(s):
- p. 649-681
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract ℓ < 40° in Galactic longitude and ∣b ∣ < 1.°5 in Galactic latitude with an angular resolution of 4.′5. We present initial results from the first part of the survey, including the diffuse emission and spectral energy distributions of Hii regions and supernova remnants (SNRs). Using low- and high-frequency surveys to constrain free–free and thermal dust emission contributions, we find evidence of excess flux density at 30 GHz in six regions, which we interpret as anomalous microwave emission. Furthermore we model ultracompact Hii contributions using data from the 5 GHz CORNISH catalog and reject these as the cause of the 30 GHz excess. Six known SNRs are detected at 30 GHz, and we measure spectral indices consistent with the literature or show evidence of steepening. The flux density of the SNR W44 at 30 GHz is consistent with a power-law extrapolation from lower frequencies with no indication of spectral steepening in contrast with recent results from the Sardinia Radio Telescope. We also extract five hydrogen radio recombination lines (RRLs) to map the warm ionized gas, which can be used to estimate electron temperatures or to constrain continuum free–free emission. The full COMAP Galactic Plane Survey, to be released in 2023/2024, will spanℓ ∼ 20°–220° and will be the first large-scale radio continuum and RRL survey at 30 GHz with 4.′5 resolution. -
The Green Bank Telescope (GBT) Diffuse Ionized Gas Survey (GDIGS) traces ionized gas in the Galactic midplane by observing radio recombination line (RRL) emission from 4–8 GHz. The nominal survey zone is 32.3° > l > -5°, |b| < 0.5°. Here, we analyze GDIGS Hnα ionized gas emission toward discrete sources with sizes comparable to the 2.065' GDIGS Hnα beam. We use GDIGS data to identify the correct velocity of 39 H II regions that have multiple RRL velocity components. We identify and characterize RRL emission from 88 H II regions that previously lacked measured ionized gas velocities. We additionally identify and characterize RRL emission from eight locations that appear to be previously-unidentified H II regions and 41 locations of RRL emission that do not appear to be H II regions based on their lack of mid-infrared emission. We identify 10 discrete sources that have anomalously high RRL velocities for their locations in the Galactic plane and we compare the objects’ RRL data to 13CO, H I and mid-infrared data. These sources do not have the expected 24 μm emission characteristic of H II regions. Based on this comparison we do not think these objects are H II regions, but we are unable to classify them as a known type of object.more » « less
-
Abstract We investigate the kinematic properties of Galactic H ii regions using radio recombination line (RRL) emission detected by the Australia Telescope Compact Array at 4–10 GHz and the Jansky Very Large Array at 8–10 GHz. Our H ii region sample consists of 425 independent observations of 374 nebulae that are relatively well isolated from other, potentially confusing sources and have a single RRL component with a high signal-to-noise ratio. We perform Gaussian fits to the RRL emission in position-position–velocity data cubes and discover velocity gradients in 178 (42%) of the nebulae with magnitudes between 5 and 200 m s − 1 arcsec − 1 . About 15% of the sources also have an RRL width spatial distribution that peaks toward the center of the nebula. The velocity gradient position angles appear to be random on the sky with no favored orientation with respect to the Galactic plane. We craft H ii region simulations that include bipolar outflows or solid body rotational motions to explain the observed velocity gradients. The simulations favor solid body rotation since, unlike the bipolar outflow kinematic models, they are able to produce both the large, >40 m s − 1 arcsec − 1 , velocity gradients and also the RRL width structure that we observe in some sources. The bipolar outflow model, however, cannot be ruled out as a possible explanation for the observed velocity gradients for many sources in our sample. We nevertheless suggest that most H ii region complexes are rotating and may have inherited angular momentum from their parent molecular clouds.more » « less
-
ABSTRACT Galactic plane radio surveys play a key role in improving our understanding of a wide range of astrophysical phenomena. Performing such a survey using the latest interferometric telescopes produces large data rates necessitating a shift towards fully or quasi-real-time data analysis with data being stored for only the time required to process them. We present here the overview and set-up for the 3000-h Max-Planck-Institut für Radioastronomie (MPIfR)–MeerKAT Galactic Plane Survey (MMGPS). The survey is unique by operating in a commensal mode, addressing key science objectives of the survey including the discovery of new pulsars and transients and studies of Galactic magnetism, the interstellar medium and star formation rates. We explain the strategy coupled with the necessary hardware and software infrastructure needed for data reduction in the imaging, spectral, and time domains. We have so far discovered 78 new pulsars including 17 confirmed binary systems of which two are potential double neutron star systems. We have also developed an imaging pipeline sensitive to the order of a few tens of micro-Jansky ($\mu{\rm Jy}$) with a spatial resolution of a few arcseconds. Further science operations with an in-house built S-band receiver operating between 1.7 and 3.5 GHz are about to commence. Early spectral line commissioning observations conducted at S-band, targeting transitions of the key molecular gas tracer CH at 3.3 GHz already illustrate the spectroscopic capabilities of this instrument. These results lay a strong foundation for future surveys with telescopes like the Square Kilometre Array (SKA).
-
ABSTRACT We present new radio continuum images and a source catalogue from the MeerKAT survey in the direction of the Small Magellanic Cloud. The observations, at a central frequency of 1.3 GHz across a bandwidth of 0.8 GHz, encompass a field of view ∼7° × 7° and result in images with resolution of 8 arcsec. The median broad-band Stokes I image Root Mean Squared noise value is ∼11 μJy beam−1. The catalogue produced from these images contains 108 330 point sources and 517 compact extended sources. We also describe a UHF (544–1088 MHz) single pointing observation. We report the detection of a new confirmed Supernova Remnant (SNR; MCSNR J0100–7211) with an X-ray magnetar at its centre and 10 new SNR candidates. This is in addition to the detection of 21 previously confirmed SNRs and two previously noted SNR candidates. Our new SNR candidates have typical surface brightness an order of magnitude below those previously known, and on the whole they are larger. The high sensitivity of the MeerKAT survey also enabled us to detect the bright end of the SMC Planetary Nebulae (PNe) sample – point-like radio emission is associated with 38 of 102 optically known PNe, of which 19 are new detections. Lastly, we present the detection of three foreground radio stars amidst 11 circularly polarized sources, and a few examples of morphologically interesting background radio galaxies from which the radio ring galaxy ESO 029–G034 may represent a new type of radio object.