Abstract Subterranean estuaries (STEs) form at the land‐sea boundary where groundwater and seawater mix. These biogeochemically reactive zones influence groundwater‐borne nutrient concentrations and speciation prior to export via submarine groundwater discharge (SGD). We examined a STE located along the York River Estuary (YRE) to determine if SGD delivers dissolved inorganic nitrogen (DIN) and phosphorus (DIP) to the overlying water. We assessed variations in STE geochemical profiles with depth across locations, times, and tidal stages, estimated N removal along the STE flow path, measured hydraulic gradients to estimate SGD, and calculated potential nutrient fluxes. Salinity, dissolved oxygen (DO), DIN, and DIP varied significantly with depth and season (p < 0.05), but not location or tidal stage. Ammonium dominated the DIN pool deep in the STE. Moving toward the sediment surface, ammonium concentrations decreased as nitrate and DO concentrations increased, suggesting nitrification. Potential sediment N removal rates mediated by denitrification were <8 mmoles N m−2 d−1. The total groundwater discharge rate was 38 ± 11 L m−2 d−1; discharge followed tidal and seasonal patterns. Net SGD nutrient fluxes were 0.065–3.2 and 0.019–0.093 mmoles m−2 d−1for DIN and DIP, respectively. However, microbial N removal in the STE may attenuate 0.58% to >100% of groundwater DIN. SGD fluxes were on the same order of magnitude as diffusive benthic fluxes but accounted for <10% of the nutrients delivered by fluvial advection in the YRE. Our results indicate the importance of STE biogeochemical transformations to SGD flux estimations and their role in coastal eutrophication and nutrient dynamics.
more »
« less
Global subterranean estuaries modify groundwater nutrient loading to the ocean
Abstract Terrestrial groundwater travels through subterranean estuaries before reaching the sea. Groundwater‐derived nutrients drive coastal water quality, primary production, and eutrophication. We determined how dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and dissolved organic nitrogen (DON) are transformed within subterranean estuaries and estimated submarine groundwater discharge (SGD) nutrient loads compiling > 10,000 groundwater samples from 216 sites worldwide. Nutrients exhibited complex, nonconservative behavior in subterranean estuaries. Fresh groundwater DIN and DIP are usually produced, and DON is consumed during transport. Median total SGD (saline and fresh) fluxes globally were 5.4, 2.6, and 0.18 Tmol yr−1for DIN, DON, and DIP, respectively. Despite large natural variability, total SGD fluxes likely exceed global riverine nutrient export. Fresh SGD is a small source of new nutrients, but saline SGD is an important source of mostly recycled nutrients. Nutrients exported via SGD via subterranean estuaries are critical to coastal biogeochemistry and a significant nutrient source to the oceans.
more »
« less
- Award ID(s):
- 1737258
- PAR ID:
- 10507612
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography Letters
- Volume:
- 9
- Issue:
- 4
- ISSN:
- 2378-2242
- Format(s):
- Medium: X Size: p. 411-422
- Size(s):
- p. 411-422
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Sandy sediment beaches covering 70% of non‐ice‐covered coastlines are important ecosystems for nutrient cycling along the land‐ocean continuum. Subterranean estuaries (STEs), where groundwater and seawater meet, are hotspots for biogeochemical cycling within sandy beaches. The STE microbial community facilitates biogeochemical reactions, determining the fate of nutrients, including nitrogen (N), supplied by groundwater. Nitrification influences the fate of N, oxidising reduced dissolved inorganic nitrogen (DIN), making it available for N removal. We used metabarcoding of 16S rRNA genes and quantitative PCR (qPCR) of ammonia monooxygenase (amoA) genes to characterise spatial and temporal variation in STE microbial community structure and nitrifying organisms. We examined nitrifier diversity, distribution and abundance to determine how geochemical measurements influenced their distribution in STEs. Sediment microbial communities varied with depth (p‐value = 0.001) and followed geochemical gradients in dissolved oxygen (DO), salinity, pH, dissolved inorganic carbon and DIN. Genetic potential for nitrification in the STE was evidenced by qPCR quantification ofamoAgenes. Ammonia oxidiser abundance was best explained by DIN, DO and pH. Our results suggest that geochemical gradients are tightly linked to STE community composition and nitrifier abundance, which are important to determine the fate and transport of groundwater‐derived nutrients to coastal waters.more » « less
-
Abstract Subterranean estuaries (STEs) form in the subsurface where fresh groundwater and seawater meet and mix. Subterranean estuaries support a variety of biogeochemical processes including those transforming nitrogen (N). Groundwater is often enriched with dissolved inorganic nitrogen (DIN), and transformations in the STE determine the fate of that DIN, which may be discharged to coastal waters. Nitrification oxidizes ammonium (NH4+) to nitrate, making DIN available for N removal via denitrification. We measured nitrification at an STE, in Virginia, USA using in situ and ex situ methods including conservative mixing models informed by in situ geochemical profiles, an in situ experiment with15NH4+tracer injection, and ex situ sediment slurry incubations with15NH4+tracer addition. All methods indicated nitrification in the STE, but the ex situ sediment slurries revealed higher rates than both the in situ tracr experiment and mixing model estimations. Nitrification rates ranged 55.0–183.16 μmol N m−2 d−1based on mixing models, 94.2–225 μmol N m−2 d−1in the in situ tracer experiment, and 36.6–109 μmol N m−2 d−1slurry incubations. The in situ tracer experiment revealed higher rates and spatial variation not captured by the other methods. The geochemical complexity of the STE makes it difficult to replicate in situ conditions with incubations and calculations based on chemical profiles integrate over longer timescales, therefore, in situ approaches may best quantify transformation rates. Our data suggest that STE nitrification produces NO3−, altering the DIN pool discharged to overlying water via submarine groundwater discharge.more » « less
-
null (Ed.)Quantifying and characterizing groundwater flow and discharge from barrier islands to coastal waters is crucial for assessing freshwater resources and contaminant transport to the ocean. In this study, we examined the groundwater hydrological response, discharge, and associated nutrient fluxes in Dauphin Island, a barrier island located in the northeastern Gulf of Mexico. We employed radon ( 222 Rn) and radium (Ra) isotopes as tracers to evaluate the temporal and spatial variability of fresh and recirculated submarine groundwater discharge (SGD) in the nearshore waters. The results from a 40-day continuous 222 Rn time series conducted during a rainy season suggest that the coastal area surrounding Dauphin Island was river-dominated in the days after storm events. Groundwater response was detected about 1 week after the precipitation and peak river discharge. During the period when SGD was a factor in the nutrient budget of the coastal area, the total SGD rates were as high as 1.36 m day –1 , or almost three times higher than detected fluxes during the river-dominated period. We found from a three-endmember Ra mixing model that most of the SGD from the barrier island was composed of fresh groundwater. SGD was driven by marine and terrestrial forces, and focused on the southeastern part of the island. We observed spatial variability of nutrients in the subterranean estuary across this part of the island. Reduced nitrogen (i.e., NH 4 + and dissolved organic nitrogen) fluxes dominated the eastern shore with average rates of 4.88 and 5.20 mmol m –2 day –1 , respectively. In contrast, NO 3 – was prevalent along the south-central shore, which has significant tourism developments. The contrasting nutrient dynamics resulted in N- and P-limited coastal water in the different parts of the island. This study emphasizes the importance of understanding groundwater flow and dynamics in barrier islands, particularly those urbanized, prone to storm events, or located near large estuaries.more » « less
-
Abstract Anthropogenic nitrogen (N) inputs to the landscape have serious consequences for inland and coastal waters. Reservoirs are effective at mitigating downstream N fluxes but measurements have generally focused on large reservoirs and have not considered seasonal variability or all N forms. In this study, we conducted an N mass balance in eight small reservoirs (surface area <0.55 km2) in coastal New England over annual time periods, including both inorganic and organic forms of N. We found that small reservoirs have high capacity for dissolved inorganic N (DIN) retention during low and moderate discharge, but are roughly in balance for DIN at higher discharge. Because proportional DIN retention occurred when N inputs were at their lowest, their effect on downstream N fluxes is small over annual time frames. Further, dissolved organic N (DON) was also evident during low flow late in the warm season. Accounting for DON production, the net effect of reservoirs on total dissolved N (TDN) fluxes was limited. These transformations between inorganic and organic N should be considered when evaluating the effect of small reservoirs on TDN fluxes over seasonal and annual timescales. With dam removal becoming a common solution to aging, unsafe dams, their ability to retain or produce N must be scrutinized at longer time scales while accounting for the complete N pool to better comprehend the effect their reservoirs have on downstream waters.more » « less