This content will become publicly available on July 24, 2025
- Award ID(s):
- 2120834
- PAR ID:
- 10507663
- Publisher / Repository:
- Cognitive Science Society
- Date Published:
- Journal Name:
- Proceedings of the Annual Conference of the Cognitive Science Society
- ISSN:
- 1069-7977
- Subject(s) / Keyword(s):
- rhythm language discrimination speech perception language acquisition computational modeling
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Rhythm plays an important role in language perception and learning, with infants perceiving rhythmic differences across languages at birth. While the mechanisms underlying rhythm perception in speech remain unclear, one interesting possibility is that these mechanisms are similar to those involved in the perception of musical rhythm. In this work, we adopt a model originally designed for musical rhythm to simulate speech rhythm perception. We show that this model replicates the behavioral results of language discrimination in newborns, and outperforms an existing model of infant language discrimination. We also find that percussives — fast-changing components in the acoustics — are necessary for distinguishing languages of different rhythms, which suggests that percussives are essential for rhythm perception. Our music-inspired model of speech rhythm may be seen as a first step towards a unified theory of how rhythm is represented in speech and music.more » « less
-
Prosody perception is fundamental to spoken language communication as it supports comprehension, pragmatics, morphosyntactic parsing of speech streams, and phonological awareness. A particular aspect of prosody: perceptual sensitivity to speech rhythm patterns in words (i.e., lexical stress sensitivity), is also a robust predictor of reading skills, though it has received much less attention than phonological awareness in the literature. Given the importance of prosody and reading in educational outcomes, reliable and valid tools are needed to conduct large-scale health and genetic investigations of individual differences in prosody, as groundwork for investigating the biological underpinnings of the relationship between prosody and reading. Motivated by this need, we present the Test of Prosody via Syllable Emphasis (“TOPsy”) and highlight its merits as a phenotyping tool to measure lexical stress sensitivity in as little as 10 min, in scalable internet-based cohorts. In this 28-item speech rhythm perception test [modeled after the stress identification test from Wade-Woolley (2016) ], participants listen to multi-syllabic spoken words and are asked to identify lexical stress patterns. Psychometric analyses in a large internet-based sample shows excellent reliability, and predictive validity for self-reported difficulties with speech-language, reading, and musical beat synchronization. Further, items loaded onto two distinct factors corresponding to initially stressed vs. non-initially stressed words. These results are consistent with previous reports that speech rhythm perception abilities correlate with musical rhythm sensitivity and speech-language/reading skills, and are implicated in reading disorders (e.g., dyslexia). We conclude that TOPsy can serve as a useful tool for studying prosodic perception at large scales in a variety of different settings, and importantly can act as a validated brief phenotype for future investigations of the genetic architecture of prosodic perception, and its relationship to educational outcomes.more » « less
-
While a range of measures based on speech production, language, and perception are possible (Manun et al., 2020) for the prediction and estimation of speech intelligibility, what constitutes second language (L2) intelligibility remains under-defined. Prosodic and temporal features (i.e., stress, speech rate, rhythm, and pause placement) have been shown to impact listener perception (Kang et al., 2020). Still, their relationship with highly intelligible speech is yet unclear. This study aimed to characterize L2 speech intelligibility. Acoustic analyses, including PRAAT and Python scripts, were conducted on 405 speech samples (30 s) from 102 L2 English speakers with a wide variety of backgrounds, proficiency levels, and intelligibility levels. The results indicate that highly intelligible speakers of English employ between 2 and 4 syllables per second and that higher or lower speeds are less intelligible. Silent pauses between 0.3 and 0.8 s were associated with the highest levels of intelligibility. Rhythm, measured by Δ syllable length of all content syllables, was marginally associated with intelligibility. Finally, lexical stress accuracy did not interfere substantially with intelligibility until less than 70% of the polysyllabic words were incorrect. These findings inform the fields of first and second language research as well as language education and pathology.
-
null (Ed.)Previous research suggests that individuals with weaker receptive language show increased reliance on lexical information for speech perception relative to individuals with stronger receptive language, which may reflect a difference in how acoustic-phonetic and lexical cues are weighted for speech processing. Here we examined whether this relationship is the consequence of conflict between acoustic-phonetic and lexical cues in speech input, which has been found to mediate lexical reliance in sentential contexts. Two groups of participants completed standardized measures of language ability and a phonetic identification task to assess lexical recruitment (i.e., a Ganong task). In the high conflict group, the stimulus input distribution removed natural correlations between acoustic-phonetic and lexical cues, thus placing the two cues in high competition with each other; in the low conflict group, these correlations were present and thus competition was reduced as in natural speech. The results showed that 1) the Ganong effect was larger in the low compared to the high conflict condition in single-word contexts, suggesting that cue conflict dynamically influences online speech perception, 2) the Ganong effect was larger for those with weaker compared to stronger receptive language, and 3) the relationship between the Ganong effect and receptive language was not mediated by the degree to which acoustic-phonetic and lexical cues conflicted in the input. These results suggest that listeners with weaker language ability down-weight acoustic-phonetic cues and rely more heavily on lexical knowledge, even when stimulus input distributions reflect characteristics of natural speech input.more » « less
-
In the first year of life, infants' speech perception becomes attuned to the sounds of their native language. Many accounts of this early phonetic learning exist, but computational models predicting the attunement patterns observed in infants from the speech input they hear have been lacking. A recent study presented the first such model, drawing on algorithms proposed for unsupervised learning from naturalistic speech, and tested it on a single phone contrast. Here we study five such algorithms, selected for their potential cognitive relevance. We simulate phonetic learning with each algorithm and perform tests on three phone contrasts from different languages, comparing the results to infants' discrimination patterns. The five models display varying degrees of agreement with empirical observations, showing that our approach can help decide between candidate mechanisms for early phonetic learning, and providing insight into which aspects of the models are critical for capturing infants' perceptual development.more » « less