skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Linking cognitive and neural models of audiovisual processing to explore speech perception in autism
Autistic and neurotypical children do not handle audiovisual speech in the same manner. Current evidence suggests that this difference occurs at the level of cue combination. Here, we test whether differences in autistic and neurotypical audiovisual speech perception can be explained by a neural theory of sensory perception in autism, which proposes that heightened levels of neural excitation can account for sensory differences in autism. Through a linking hypothesis that integrates a standard probabilistic cognitive model of cue integration with representations of neural activity, we derive a model that can simulate audio-visual speech perception at a neural population level. Simulations of an audiovisual lexical identification task demonstrate that heightened levels of neural excitation at the level of cue combination cannot account for the observed differences in autistic and neurotypical children's audiovisual speech perception.  more » « less
Award ID(s):
2120834
PAR ID:
10507664
Author(s) / Creator(s):
;
Publisher / Repository:
Cognitive Science Society
Date Published:
Journal Name:
Proceedings of the Annual Conference of the Cognitive Science Society
ISSN:
1069-7977
Subject(s) / Keyword(s):
speech perception autism Bayesian neural network multisensory integration
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The ability to take contextual information into account is essential for successful speech processing. This study examines individuals with high-functioning autism and those without in terms of how they adjust their perceptual expectation while discriminating speech sounds in different phonological contexts. Listeners were asked to discriminate pairs of sibilant-vowel monosyllables. Typically, discriminability of sibilants increases when the sibilants are embedded in perceptually enhancing contexts (if the appropriate context-specific perceptual adjustment were performed) and decreases in perceptually diminishing contexts. This study found a reduction in the differences in perceptual response across enhancing and diminishing contexts among high-functioning autistic individuals relative to the neurotypical controls. The reduction in perceptual expectation adjustment is consistent with an increase in autonomy in low-level perceptual processing in autism and a reduction in the influence of top-down information from surrounding information. 
    more » « less
  2. Schaeffer, J; Novogrodsky, R; Perovic, A; Prévost, P; Tuller, L (Ed.)
    Alongside the behavioral features of autism, this neurodevelopmental disorder is characterized by important differences in the neural circuitry underlying language processing. Regarding brain structure, most neurotypical individuals have larger left-hemisphere volumes of brain regions that are important for language, compared to the same regions in the right hemisphere (the right half of the brain). This asymmetry is due to neural specialization of left hemisphere regions for the purpose of language functions. In contrast, the brains of autistic individuals seem to be more symmetrical, suggesting that language difficulties are associated with reduced left hemisphere specialization for language in the brain. The activity of brain regions involved in language also differs in autism. Examining brain activity reveals nuanced and important differences in the processes underlying language production and comprehension in neurotypical and autistic individuals, even when their language behavior appears similar. 
    more » « less
  3. Abstract The production of speech and gesture is exquisitely temporally coordinated. In autistic individuals, speech-gesture synchrony during spontaneous discourse is disrupted. To evaluate whether this asynchrony reflects motor coordination versus language production processes, the current study examineddeliberatelyperformed hand movements during speech in youth with autism spectrum disorder (ASD) compared to neurotypical youth. Neurotypical adult performance provided a mature baseline. Participants read aloud rhythmic nursery rhymes, while producing a beat-like hand movement. An automated pixel-change video measure identified kinematic peaks; using smoothed acoustic envelope analyses, we identified peaks in speech. Results indicated few diagnostic group differences in explicit speech-movement coordination, although adolescent performance differed from adults. Adults demonstrated higher tempo and greater rhythmicity in their coordination; this group difference suggests that the method is sufficiently subtle to reveal individual differences and that this form of complex coordination undergoes ongoing maturation beyond adolescence. The sample is small, and thus results are necessarily preliminary. In the context of prior speech-gesture coordination studies, these findings of intact synchrony are consistent with the hypothesis that it is the demands of discourse planning, rather than motor coordination, that have led to prior findings of asynchrony during spontaneous speech; this possibility awaits future research. 
    more » « less
  4. null (Ed.)
    Purpose Differences in communication development impact long-term outcomes of children with autism. Previous research has identified factors associated with communication in children with autism, but much of the variance in communication skill remains unexplained. It has been proposed that early differences in sensory responsiveness (i.e., hyporesponsiveness, hyperresponsiveness, and sensory seeking) may produce “cascading effects” on communication. Evidence for this theory is limited, however, as relations between sensory responsiveness and communication in the earliest stages of development have not been well established. The purpose of this study was to evaluate (a) whether infants with a heightened likelihood of autism diagnosis (i.e., infants with an older sibling with autism) differ from infants at general population–level likelihood of autism (i.e., infants with an older, nonautistic sibling) on patterns of sensory responsiveness, (b) whether early sensory responsiveness is correlated with concurrent communication, and (c) whether the aforementioned between-groups differences and associations are moderated by age. Method Participants were 40 infants (20 infants with an older sibling with autism, 20 infants with an older, nonautistic sibling) aged 12–18 months. A series of observational and parent report measures of sensory responsiveness and communication skill were administered. Results Group differences in sensory responsiveness across the 12- to 18-month period were limited (i.e., only observed for one measure of hyporesponsiveness), though selected differences in sensory responsiveness (i.e., parent-reported hyperresponsiveness and sensory seeking) emerged between groups over this developmental window. Parent-reported hyporesponsiveness was unconditionally, negatively associated with communication skills. Associations between expressive communication and (a) parent-reported sensory seeking and (b) an observational measure of hyperresponsiveness were moderated by age. Conclusions This study provides new insights into the nature of sensory responsiveness and theorized links with communication skill in infants at elevated and general population–level likelihood of autism diagnosis. Further work is needed to better characterize the effects of interest in a larger sample spanning a wider age range. Supplemental Material https://doi.org/10.23641/asha.14515542 
    more » « less
  5. It has been postulated that the brain is organized by “metamodal,” sensory-independent cortical modules capable of performing tasks (e.g., word recognition) in both “standard” and novel sensory modalities. Still, this theory has primarily been tested in sensory-deprived individuals, with mixed evidence in neurotypical subjects, thereby limiting its support as a general principle of brain organization. Critically, current theories of metamodal processing do not specify requirements for successful metamodal processing at the level of neural representations. Specification at this level may be particularly important in neurotypical individuals, where novel sensory modalities must interface with existing representations for the standard sense. Here we hypothesized that effective metamodal engagement of a cortical area requires congruence between stimulus representations in the standard and novel sensory modalities in that region. To test this, we first used fMRI to identify bilateral auditory speech representations. We then trained 20 human participants (12 female) to recognize vibrotactile versions of auditory words using one of two auditory-to-vibrotactile algorithms. The vocoded algorithm attempted to match the encoding scheme of auditory speech while the token-based algorithm did not. Crucially, using fMRI, we found that only in the vocoded group did trained-vibrotactile stimuli recruit speech representations in the superior temporal gyrus and lead to increased coupling between them and somatosensory areas. Our results advance our understanding of brain organization by providing new insight into unlocking the metamodal potential of the brain, thereby benefitting the design of novel sensory substitution devices that aim to tap into existing processing streams in the brain. SIGNIFICANCE STATEMENTIt has been proposed that the brain is organized by “metamodal,” sensory-independent modules specialized for performing certain tasks. This idea has inspired therapeutic applications, such as sensory substitution devices, for example, enabling blind individuals “to see” by transforming visual input into soundscapes. Yet, other studies have failed to demonstrate metamodal engagement. Here, we tested the hypothesis that metamodal engagement in neurotypical individuals requires matching the encoding schemes between stimuli from the novel and standard sensory modalities. We trained two groups of subjects to recognize words generated by one of two auditory-to-vibrotactile transformations. Critically, only vibrotactile stimuli that were matched to the neural encoding of auditory speech engaged auditory speech areas after training. This suggests that matching encoding schemes is critical to unlocking the brain's metamodal potential. 
    more » « less