skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Room temperature control of grain orientation via directionally modulated current pulses
Abstract Traditional approaches to control the microstructure of materials, such as annealing, require high temperature treatment for long periods of time. In this study, we present a room temperature microstructure manipulation method by using the mechanical momentum of electrical current pulses. In particular, a short burst of high-density current pulses with low duty cycle is applied to an annealed FeCrAl alloy, and the corresponding response of microstructure is captured by using Electron Backscattered Diffraction (EBSD) analysis. We show evidence of controllable changes in grain orientation at specimen temperature around 28 °C. To demonstrate such microstructural control, we apply the current pulses in two perpendicular directions and observe the corresponding grain rotation. Up to 18° of grain rotation was observed, which could be reversed by varying the electropulsing direction. Detailed analysis at the grain level reveals that electropulsing in a specific direction induces clockwise rotation from their pristine state, while subsequent cross-perpendicular electropulsing results in an anticlockwise rotation. In addition, our proposed room temperature processing yields notable grain refinement, while the average misorientation and density of low-angle grain boundaries (LAGBs) remain unaltered. The findings of this study highlight the potentials of ‘convective diffusion’ in electrical current based materials processing science towards microstructural control at room temperature.  more » « less
Award ID(s):
2103928
PAR ID:
10507795
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Institute of Physics
Date Published:
Journal Name:
Materials Research Express
Volume:
10
Issue:
11
ISSN:
2053-1591
Page Range / eLocation ID:
116521
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Severe plastic deformation (SPD) has been known for decades to provide microstructural refinement under a hydrostatic stress state by introducing a tremendous quantity of lattice defects, including vacancies, dislocations, and grain boundaries, leading to enhanced mechanical properties. Many SPD processes have been well studied and utilized for the processing of ultrafine-grained (UFG) metals and materials. One major challenge with SPD-processed UFG materials is their limited applicability, primarily due to their microstructural stability at elevated temperatures and the difficulty of scaling up to larger sizes or volumes. To first understand the thermal stability of UFG material, a copper prepared by high-pressure torsion, a technique that can achieve true nano-scale grains in bulk samples, was evaluated using two novel in situ techniques of micro-beam high-energy synchrotron X-ray diffraction. These are, namely, monochromatic X-ray beams that yield changes in microstructure with time and temperature, and a polychromatic X-ray beam that determines grain reorientation behavior during microstructural relaxation. Furthermore, a new processing technique named cold angular rolling process (CARP) demonstrated some promise as an SPD technique for producing theoretically unlimited lengths of strength-enhanced copper sheets at room temperature with a relatively low energy consumption. Additional miniature tensile testing incorporating digital image correlation (DIC) method and microstructural analysis utilizing high-energy X-ray diffraction determined the influence of CARP having higher shear strain hardening in comparison with other established techniques. This study highlights the significance of lattice-defect influenced mechanical properties and microstructure of UFG obtained across multi-length scales and volumes, which are critical for guiding the control and scalable production of advanced materials for commercialization. 
    more » « less
  2. Additive manufacturing allows fabrication of custom-shaped thermoelectric materials while minimizing waste, reducing processing steps, and maximizing integration compared to conventional methods. Establishing the process-structure-property relationship of laser additive manufactured thermoelectric materials facilitates enhanced process control and thermoelectric performance. This research focuses on laser processing of bismuth telluride (Bi 2 Te 3 ), a well-established thermoelectric material for low temperature applications. Single melt tracks under various parameters (laser power, scan speed and number of scans) were processed on Bi 2 Te 3 powder compacts. A detailed analysis of the transition in the melting mode, grain growth, balling formation, and elemental composition is provided. Rapid melting and solidification of Bi 2 Te 3 resulted in fine-grained microstructure with preferential grain growth along the direction of the temperature gradient. Experimental results were corroborated with simulations for melt pool dimensions as well as grain morphology transitions resulting from the relationship between temperature gradient and solidification rate. Samples processed at 25 W, 350 mm/s with 5 scans resulted in minimized balling and porosity, along with columnar grains having a high density of dislocations. 
    more » « less
  3. null (Ed.)
    Methylammonium lead iodide (MAPbI 3 ) is an important light-harvesting semiconducting material for solar-cell devices. We investigate the effect of long thermal annealing in an inert atmosphere of compacted MAPbI 3 perovskite powders. The microstructure morphology of the MAPbI 3 annealed samples reveals a well-defined grain boundary morphology. The voids and neck-connecting grains are observed throughout the samples, indicating a well-sintered process due to mass diffusion transfer through the grain boundary. The long 40 h thermal annealing at T = 522 K ( k B T = 45 meV) causes a significant shift in the structural phase transition, stabilizing the low-electrical conductivity and high-efficiency cubic structure at room temperature. The complete disordered orientation of MA cations maximizes the entropy of the system, which, in turn, increases the Pb–I–Pb angle close to 180°. The MA rotation barrier and entropy analysis determined through DFT calculations suggest that the configurational entropy is a function of the annealing time. The disordered organic molecules are quenched and become kinetically trapped in the cubic phase down to room temperature. We propose a new phase diagram for this important system combining different structural phases as a function of temperature with annealing time for MAPbI 3 . The absence of the coexistence of different structural phases, leading to thermal hysteresis, can significantly improve the electrical properties of the solar cell devices. Through an entropy-driven stabilization phenomenon, we offer an alternative path for improving the maintenance, toughness, and efficiency of the optoelectronic devices by removing the microstructural stress brought by the structural phase transformation within the solar cell working temperature range. 
    more » « less
  4. Abstract Defect mitigation of electronic devices is conventionally achieved using thermal annealing. To mobilize the defects, very high temperatures are necessary. Since thermal diffusion is random in nature, the process may take a prolonged period of time. In contrast, we demonstrate a room temperature annealing technique that takes only a few seconds. The fundamental mechanism is defect mobilization by atomic scale mechanical force originating from very high current density but low duty cycle electrical pulses. The high-energy electrons lose their momentum upon collision with the defects, yet the low duty cycle suppresses any heat accumulation to keep the temperature ambient. For a 7 × 105A cm−2pulsed current, we report an approximately 26% reduction in specific on-resistance, a 50% increase of the rectification ratio with a lower ideality factor, and reverse leakage current for as-fabricated vertical geometry GaN p–n diodes. We characterize the microscopic defect density of the devices before and after the room temperature processing to explain the improvement in the electrical characteristics. Raman analysis reveals an improvement in the crystallinity of the GaN layer and an approximately 40% relaxation of any post-fabrication residual strain compared to the as-received sample. Cross-sectional transmission electron microscopy (TEM) images and geometric phase analysis results of high-resolution TEM images further confirm the effectiveness of the proposed room temperature annealing technique to mitigate defects in the device. No detrimental effect, such as diffusion and/or segregation of elements, is observed as a result of applying a high-density pulsed current, as confirmed by energy dispersive x-ray spectroscopy mapping. 
    more » « less
  5. Magnesium (Mg) alloys are promising lightweight structural materials whose limited strength and room‐temperature ductility limit applications. Precise control of deformation‐induced twinning through microstructural alloy design is being investigated to overcome these deficiencies. Motivated by the need to understand and control twin formation during deformation in Mg alloys, a series of magnesium‐yttrium (Mg–Y) alloys are investigated using electron backscatter diffraction (EBSD). Analysis of EBSD maps produces a large dataset of microstructural information for >40000 grains. To quantitatively determine how processing parameters and microstructural features are correlated with twin formation, interpretable machine learning (ML) is employed to statistically analyze the individual effects of microstructural features on twinning. An ML classifier is trained to predict the likelihood of twin formation, given inputs including grain microstructural information and synthesis and deformation conditions. Then, feature selection is used to score the relative importance of these inputs for twinning in Mg–Y alloys. It is determined that using information only about grain size, grain orientation, and total applied strain, the ML model can predict the presence of twinning and that other parameters do not significantly contribute to increasing the model's predictive accuracy. Herein, the utility of ML for gaining new fundamental insights into materials processing is illustrated. 
    more » « less