skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: WAS IT A MATch I SAW? Approximate palindromes lead to overstated false match rates in benchmarks using reversed sequences
Abstract BackgroundSoftware for labeling biological sequences typically produces a theory-based statistic for each match (the E-value) that indicates the likelihood of seeing that match’s score by chance. E-values accurately predict false match rate for comparisons of random (shuffled) sequences, and thus provide a reasoned mechanism for setting score thresholds that enable high sensitivity with low expected false match rate. This threshold-setting strategy is challenged by real biological sequences, which contain regions of local repetition and low sequence complexity that cause excess matches between non-homologous sequences. Knowing this, tool developers often develop benchmarks that use realistic-seeming decoy sequences to explore empirical tradeoffs between sensitivity and false match rate. A recent trend has been to employ reversed biological sequences as realistic decoys, because these preserve the distribution of letters and the existence of local repeats, while disrupting the original sequence’s functional properties. However, we and others have observed that sequences appear to produce high scoring alignments to their reversals with surprising frequency, leading to overstatement of false match risk that may negatively affect downstream analysis. ResultsWe demonstrate that an alignment between a sequence S and its (possibly mutated) reversal tends to produce higher scores than alignment between truly unrelated sequences, even when S is a shuffled string with no notable repetitive or low-complexity regions. This phenomenon is due to the unintuitive fact that (even randomly shuffled) sequences contain palindromes that are on average longer than the longest common substrings (LCS) shared between permuted variants of the same sequence. Though the expected palindrome length is only slightly larger than the expected LCS, the distribution of alignment scores involving reversed sequences is strongly right-shifted, leading to greatly increased frequency of high-scoring alignments to reversed sequences. ImpactOverestimates of false match risk can motivate unnecessarily high score thresholds, leading to potentially reduced true match sensitivity. Also, when tool sensitivity is only reported up to the score of the first matched decoy sequence, a large decoy set consisting of reversed sequences can obscure sensitivity differences between tools. As a result of these observations, we advise that reversed biological sequences be used as decoys only when care is taken to remove positive matches in the original (un-reversed) sequences, or when overstatement of false labeling is not a concern. Though the primary focus of the analysis is on sequence annotation, we also demonstrate that the prevalence of internal palindromes may lead to an overstatement of the rate of false labels in protein identification with mass spectrometry.  more » « less
Award ID(s):
2312016
PAR ID:
10507827
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics Advances
Volume:
4
Issue:
1
ISSN:
2635-0041
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundAdding sequences into an existing (possibly user-provided) alignment has multiple applications, including updating a large alignment with new data, adding sequences into a constraint alignment constructed using biological knowledge, or computing alignments in the presence of sequence length heterogeneity. Although this is a natural problem, only a few tools have been developed to use this information with high fidelity. ResultsWe present EMMA (Extending Multiple alignments using MAFFT--add) for the problem of adding a set of unaligned sequences into a multiple sequence alignment (i.e., a constraint alignment). EMMA builds on MAFFT--add, which is also designed to add sequences into a given constraint alignment. EMMA improves on MAFFT--add methods by using a divide-and-conquer framework to scale its most accurate version, MAFFT-linsi--add, to constraint alignments with many sequences. We show that EMMA has an accuracy advantage over other techniques for adding sequences into alignments under many realistic conditions and can scale to large datasets with high accuracy (hundreds of thousands of sequences). EMMA is available athttps://github.com/c5shen/EMMA. ConclusionsEMMA is a new tool that provides high accuracy and scalability for adding sequences into an existing alignment. 
    more » « less
  2. Abstract Alignments of multiple genomes are a cornerstone of comparative genomics, but generating these alignments remains technically challenging and often impractical. We developed themsa_pipelineworkflow (https://bitbucket.org/bucklerlab/msa_pipeline) to allow practical and sensitive multiple alignment of diverged plant genomes and calculation of conservation scores with minimal user inputs. As high repeat content and genomic divergence are substantial challenges in plant genome alignment, we also explored the effect of different masking approaches and parameters of the LAST aligner using genome assemblies of 33 grass species. Compared with conventional masking with RepeatMasker, a masking approach based onk‐mers (nucleotide sequences ofklength) increased the alignment rate of coding sequence and noncoding functional regions by 25 and 14%, respectively. We further found that default alignment parameters generally perform well, but parameter tuning can increase the alignment rate for noncoding functional regions by over 52% compared with default LAST settings. Finally, by increasing alignment sensitivity from the default baseline, parameter tuning can increase the number of noncoding sites that can be scored for conservation by over 76%. Overall, tuning of masking and alignment parameters can generate optimized multiple alignments to drive biological discovery in plants. 
    more » « less
  3. Abstract MotivationMultiple sequence alignment (MSA) is a basic step in many bioinformatics pipelines. However, achieving highly accurate alignments on large datasets, especially those with sequence length heterogeneity, is a challenging task. Ultra-large multiple sequence alignment using Phylogeny-aware Profiles (UPP) is a method for MSA estimation that builds an ensemble of Hidden Markov Models (eHMM) to represent an estimated alignment on the full-length sequences in the input, and then adds the remaining sequences into the alignment using selected HMMs in the ensemble. Although UPP provides good accuracy, it is computationally intensive on large datasets. ResultsWe present UPP2, a direct improvement on UPP. The main advance is a fast technique for selecting HMMs in the ensemble that allows us to achieve the same accuracy as UPP but with greatly reduced runtime. We show that UPP2 produces more accurate alignments compared to leading MSA methods on datasets exhibiting substantial sequence length heterogeneity and is among the most accurate otherwise. Availability and implementationhttps://github.com/gillichu/sepp. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  4. Abstract MotivationDespite advances in method development for multiple sequence alignment over the last several decades, the alignment of datasets exhibiting substantial sequence length heterogeneity, especially when the input sequences include very short sequences (either as a result of sequencing technologies or of large deletions during evolution) remains an inadequately solved problem. ResultsWe present HMMerge, a method to compute an alignment of datasets exhibiting high sequence length heterogeneity, or to add short sequences into a given ‘backbone’ alignment. HMMerge builds on the technique from its predecessor alignment methods, UPP and WITCH, which build an ensemble of profile HMMs to represent the backbone alignment and add the remaining sequences into the backbone alignment using the ensemble. HMMerge differs from UPP and WITCH by building a new ‘merged’ HMM from the ensemble, and then using that merged HMM to align the query sequences. We show that HMMerge is competitive with WITCH, with an advantage over WITCH when adding very short sequences into backbone alignments. Availability and implementationHMMerge is freely available at https://github.com/MinhyukPark/HMMerge. Supplementary informationSupplementary data are available at Bioinformatics Advances online. 
    more » « less
  5. While most models of decision-making assume that individuals assign options absolute values, animals often assess options comparatively, violating principles of economic rationality. Such ‘irrational’ preferences are especially common when two rewards vary along multiple dimensions of quality and a third, ‘decoy’ option is available. Bumblebees are models of decision-making, yet whether they are subject to decoy effects is unknown. We addressed this question using bumblebees (Bombus impatiens) choosing between flowers that varied in their nectar concentration and reward rate. We first gave bees a choice between two flower types, one higher in concentration and the other higher in reward rate. Bees were then given a choice between these flowers and either a ‘concentration’ or ‘rate’ decoy, designed to be asymmetrically dominated on each axis. The rate decoy increased bees’ preference in the expected direction, while the concentration decoy did not. In a second experiment, we manipulated choices along two single reward dimensions to test whether this discrepancy was explained by differences in how concentration versus reward rate were evaluated. We found that low-concentration decoys increased bees’ preference for the medium option as predicted, whereas low-rate decoys had no effect. Our results suggest that both low- and high-value flowers can influence pollinator preferences in ways previously unconsidered. 
    more » « less