skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unearthing the legacy of wildfires: post fire pyrogenic carbon and soil carbon persistence across complex Pacific Northwest watersheds
Abstract Wildfires have the potential to dramatically alter the carbon (C) storage potential, ecological function, and the fundamental mechanisms that control the C balance of Pacific Northwest (PNW) forested ecosystems. In this study, we explored how wildfire influences processes that control soil C stabilization and the consequent soil C persistence, and the role of previous fire history in determining soil C fire response dynamics. We collected mineral soils at four depth increments from burned (low, moderate, and high soil burn severity classes) and unburned areas and surveyed coarse woody debris (CWD) in sites within the footprint of the 2020 Holiday Farm Fire and in surrounding Willamette National Forest and the H.J. Andrews Experimental Forest. We found few changes in overall soil C pools as a function of fire severity; we instead found that unburned sites contained high levels of pyrogenic C (PyC) that were commensurate with PyC concentrations in the high severity burn sites—pointing to the high background rate of fire in these ecosystems. An analysis of historical fire events lends additional support, where increasing fire count is loosely correlated with increasing PyC concentration. An unexpected finding was that PyC concentration was lower in low soil burn severity sites than in control sites, which we attribute to fundamental ecological differences in regions that repeatedly burn at high severity compared with those that burn at low severity. Our CWD analysis showed that high mean fire return interval (decades between fire events) was strongly correlated with low annual CWD accumulation rate; whereas areas that burn frequently had a high annual CWD accumulation rate. Within the first year postfire, trends in soil density fractions demonstrated no significant response to fire for the mineral-associated organic matter pool but slight increases in the particulate pool with increasing soil burn severity—likely a function of increased charcoal additions. Overall, our results suggest that these PNW forest soils display complex responses to wildfire with feedbacks between CWD pools that provide varying fuel loads and a mosaic fire regime across the landscape. Microclimate and historic fire events are likely important determinants of soil C persistence in these systems.  more » « less
Award ID(s):
2025755
PAR ID:
10507867
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Biogeochemistry
Volume:
167
Issue:
7
ISSN:
1573-515X
Format(s):
Medium: X Size: p. 927-944
Size(s):
p. 927-944
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Wildfire is a disturbance expected to increase in frequency and severity, changes that may impact carbon (C) dynamics in the soil ecosystem. Fire changes the types of C sources available to soil microbes, increasing pyrogenic C and coarse downed wood, and if there is substantial tree mortality, decreasing C from root exudates and leaf litter. To investigate the impact of this shift in the composition of C resources on microbial processes driving C cycling, we examined microbial activity in soil sampled from an Oregon burn 1 year after fire from sites spanning a range in soil burn severity from unburned to highly burned. We found evidence that postfire rhizosphere priming loss may reduce soil C loss after fire. We measured the potential activity of C‐acquiring and nitrogen (N)‐acquiring extracellular enzymes and contextualized the microbial resource demand using measurements of mineralizable C and N. Subsurface mineralizable C and N were unaltered by fire and negatively correlated with hydrolytic extracellular enzyme activity (EEA) in unburned, but not burned sites. EEA was lower in burned sites by up to 46%, but only at depths below 5 cm, and with greater decreases in sites with high soil burn severity. These results are consistent with a subsurface mechanism driven by tree mortality. We infer that in sites with high tree mortality, subsurface EEAs decreased due to loss of rhizosphere priming and that inputs of dead roots contributed to mineralizable C stabilization. 
    more » « less
  2. Fire severity is increasing in larch forests of the Siberian Arctic as climate warms, and initial fire impacts on tree demographic processes could be an especially important determinant of long-term forest structure and carbon (C) dynamics. We hypothesized that changes in post-fire larch recruitment impact C accumulation through tree density impacts on understory microclimate and permafrost thaw. We tested these hypotheses by quantifying C pools across a Cajander larch (Larix cajanderi Mayr.) tree density gradient within a fire perimeter near Cherskiy, Russia that burned in ~1940. Across the density gradient, from 2010 - 2017 we inventoried larch trees and harvested ground-layer vegetation to estimate above ground contribution to C pools. We also quantified woody debris C pools and sampled below ground C pools (soil, fine roots, and coarse roots) in the organic + upper mineral soils. Our findings should highlight the potential for a climate-driven increase in fire severity to alter tree recruitment, successional dynamics, and C cycling in Siberian larch forests. 
    more » « less
  3. Fire severity is increasing in larch forests of the Siberian Arctic as climate warms, and initial fire impacts on tree demographic processes could be an especially important determinant of long-term forest structure and carbon (C) dynamics. We hypothesized that changes in post-fire larch recruitment impact C accumulation through tree density impacts on understory microclimate and permafrost thaw. We tested these hypotheses by quantifying C pools across a Cajander larch (Larix cajanderi Mayr.) tree density gradient within a fire perimeter near Cherskiy, Russia that burned in ~1940. Across the density gradient, from 2010 - 2017 we inventoried larch trees and harvested ground-layer vegetation to estimate above ground contribution to C pools. We also quantified woody debris C pools and sampled below ground C pools (soil, fine roots, and coarse roots) in the organic + upper mineral soils. Our findings should highlight the potential for a climate-driven increase in fire severity to alter tree recruitment, successional dynamics, and C cycling in Siberian larch forests. 
    more » « less
  4. Fire severity is increasing in larch forests of the Siberian Arctic as climate warms, and initial fire impacts on tree demographic processes could be an especially important determinant of long-term forest structure and carbon (C) dynamics. We hypothesized that changes in post-fire larch recruitment impact C accumulation through tree density impacts on understory microclimate and permafrost thaw. We tested these hypotheses by quantifying C pools across a Cajander larch (Larix cajanderi Mayr.) tree density gradient within a fire perimeter near Cherskiy, Russia that burned in ~1940. Across the density gradient, from 2010 - 2017 we inventoried larch trees and harvested ground-layer vegetation to estimate above ground contribution to C pools. We also quantified snag and woody debris C pools and sampled below ground C pools (soil, fine roots, and coarse roots) in the organic + upper mineral soils. Our findings should highlight the potential for a climate-driven increase in fire severity to alter tree recruitment, successional dynamics, and C cycling in Siberian larch forests. 
    more » « less
  5. Hui, Dafeng (Ed.)
    Wildfire frequency and extent is increasing throughout the boreal forest-tundra ecotone as climate warms. Understanding the impacts of wildfire throughout this ecotone is required to make predictions of the rate and magnitude of changes in boreal-tundra landcover, its future flammability, and associated feedbacks to the global carbon (C) cycle and climate. We studied 48 sites spanning a gradient from tundra to low-density spruce stands that were burned in an extensive 2013 wildfire on the north slope of the Alaska Range in Denali National Park and Preserve, central Alaska. We assessed wildfire severity and C emissions, and determined the impacts of severity on understory vegetation composition, conifer tree recruitment, and active layer thickness (ALT). We also assessed conifer seed rain and used a seeding experiment to determine factors controlling post-fire tree regeneration. We found that an average of 2.18 ± 1.13 Kg C m -2 was emitted from this fire, almost 95% of which came from burning of the organic soil. On average, burn depth of the organic soil was 10.6 ± 4.5 cm and both burn depth and total C combusted increased with pre-fire conifer density. Sites with higher pre-fire conifer density were also located at warmer and drier landscape positions and associated with increased ALT post-fire, greater changes in pre- and post-fire understory vegetation communities, and higher post-fire boreal tree recruitment. Our seed rain observations and seeding experiment indicate that the recruitment potential of conifer trees is limited by seed availability in this forest-tundra ecotone. We conclude that the expected climate-induced forest infilling (i.e. increased density) at the forest-tundra ecotone could increase fire severity, but this infilling is unlikely to occur without increases in the availability of viable seed. 
    more » « less