Abstract Wildfire is a disturbance expected to increase in frequency and severity, changes that may impact carbon (C) dynamics in the soil ecosystem. Fire changes the types of C sources available to soil microbes, increasing pyrogenic C and coarse downed wood, and if there is substantial tree mortality, decreasing C from root exudates and leaf litter. To investigate the impact of this shift in the composition of C resources on microbial processes driving C cycling, we examined microbial activity in soil sampled from an Oregon burn 1 year after fire from sites spanning a range in soil burn severity from unburned to highly burned. We found evidence that postfire rhizosphere priming loss may reduce soil C loss after fire. We measured the potential activity of C‐acquiring and nitrogen (N)‐acquiring extracellular enzymes and contextualized the microbial resource demand using measurements of mineralizable C and N. Subsurface mineralizable C and N were unaltered by fire and negatively correlated with hydrolytic extracellular enzyme activity (EEA) in unburned, but not burned sites. EEA was lower in burned sites by up to 46%, but only at depths below 5 cm, and with greater decreases in sites with high soil burn severity. These results are consistent with a subsurface mechanism driven by tree mortality. We infer that in sites with high tree mortality, subsurface EEAs decreased due to loss of rhizosphere priming and that inputs of dead roots contributed to mineralizable C stabilization.
more »
« less
Unearthing the legacy of wildfires: post fire pyrogenic carbon and soil carbon persistence across complex Pacific Northwest watersheds
Abstract Wildfires have the potential to dramatically alter the carbon (C) storage potential, ecological function, and the fundamental mechanisms that control the C balance of Pacific Northwest (PNW) forested ecosystems. In this study, we explored how wildfire influences processes that control soil C stabilization and the consequent soil C persistence, and the role of previous fire history in determining soil C fire response dynamics. We collected mineral soils at four depth increments from burned (low, moderate, and high soil burn severity classes) and unburned areas and surveyed coarse woody debris (CWD) in sites within the footprint of the 2020 Holiday Farm Fire and in surrounding Willamette National Forest and the H.J. Andrews Experimental Forest. We found few changes in overall soil C pools as a function of fire severity; we instead found that unburned sites contained high levels of pyrogenic C (PyC) that were commensurate with PyC concentrations in the high severity burn sites—pointing to the high background rate of fire in these ecosystems. An analysis of historical fire events lends additional support, where increasing fire count is loosely correlated with increasing PyC concentration. An unexpected finding was that PyC concentration was lower in low soil burn severity sites than in control sites, which we attribute to fundamental ecological differences in regions that repeatedly burn at high severity compared with those that burn at low severity. Our CWD analysis showed that high mean fire return interval (decades between fire events) was strongly correlated with low annual CWD accumulation rate; whereas areas that burn frequently had a high annual CWD accumulation rate. Within the first year postfire, trends in soil density fractions demonstrated no significant response to fire for the mineral-associated organic matter pool but slight increases in the particulate pool with increasing soil burn severity—likely a function of increased charcoal additions. Overall, our results suggest that these PNW forest soils display complex responses to wildfire with feedbacks between CWD pools that provide varying fuel loads and a mosaic fire regime across the landscape. Microclimate and historic fire events are likely important determinants of soil C persistence in these systems.
more »
« less
- Award ID(s):
- 2025755
- PAR ID:
- 10507867
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Biogeochemistry
- Volume:
- 167
- Issue:
- 7
- ISSN:
- 1573-515X
- Format(s):
- Medium: X Size: p. 927-944
- Size(s):
- p. 927-944
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hui, Dafeng (Ed.)Wildfire frequency and extent is increasing throughout the boreal forest-tundra ecotone as climate warms. Understanding the impacts of wildfire throughout this ecotone is required to make predictions of the rate and magnitude of changes in boreal-tundra landcover, its future flammability, and associated feedbacks to the global carbon (C) cycle and climate. We studied 48 sites spanning a gradient from tundra to low-density spruce stands that were burned in an extensive 2013 wildfire on the north slope of the Alaska Range in Denali National Park and Preserve, central Alaska. We assessed wildfire severity and C emissions, and determined the impacts of severity on understory vegetation composition, conifer tree recruitment, and active layer thickness (ALT). We also assessed conifer seed rain and used a seeding experiment to determine factors controlling post-fire tree regeneration. We found that an average of 2.18 ± 1.13 Kg C m -2 was emitted from this fire, almost 95% of which came from burning of the organic soil. On average, burn depth of the organic soil was 10.6 ± 4.5 cm and both burn depth and total C combusted increased with pre-fire conifer density. Sites with higher pre-fire conifer density were also located at warmer and drier landscape positions and associated with increased ALT post-fire, greater changes in pre- and post-fire understory vegetation communities, and higher post-fire boreal tree recruitment. Our seed rain observations and seeding experiment indicate that the recruitment potential of conifer trees is limited by seed availability in this forest-tundra ecotone. We conclude that the expected climate-induced forest infilling (i.e. increased density) at the forest-tundra ecotone could increase fire severity, but this infilling is unlikely to occur without increases in the availability of viable seed.more » « less
-
Tundra environments in Alaska are experiencing elevated levels of wildfire, and the frequency is expected to keep increasing due to rapid warming of the Arctic. Because of large amounts of carbon stored in permafrost soils, tundra wildfires may release significant amounts of carbon to the atmosphere that ultimately influence the Earth’s radiative balance. Therefore, accounting for the amount of carbon released from tundra wildfires is important for understanding the trajectory of climate change. We collected data in the Yukon-Kuskokwim River Delta during the summer of 2019 for the purpose of determining organic matter and carbon lost during the 2015 fire season. Organic matter and carbon lost from combustion were determined by combining burn depth measurements with organic matter and carbon content measurements from unburned tundra. Burn depth measurements were taken opportunistically across different levels of burn severity. Three vegetative markers, Sphagnum fuscum, Eriophorum, and Dicranum spp., that survived the fire event were used to measure the difference between the pre and post fire soil height in unburned and burned areas respectively, defined here as burn depth. All burn depth measurements are accompanied with coordinate locations so that they can ground truth and be upscaled by remote sensing data of burn severity. Organic matter and carbon content of the dense live vegetation layer and fibric soil layer were measured in the lab from vegetation and soil cores taken from four different sites in unburned tundra areas.more » « less
-
As wildfires become larger and more severe across western North America, it grows increasingly important to understand how they will affect the biogeochemical processes influencing ecosystem recovery. Soil nitrogen (N) cycling is a key process constraining recovery rates. In addition to its direct responses to fire, N cycling can also respond to other post-fire transformations, including increases or decreases in microbial biomass, soil moisture, and pH. To examine the short-term effects of wildfire on belowground processes in the northern Sierra Nevada, we collected soil samples along a gradient from unburned to high fire severity over 10 months following a wildfire. This included immediate pre- and post-fire sampling for many variables at most sites. While season and soil moisture did not substantially alter pH, microbial biomass, net N mineralisation, and nitrification in unburned locations, they interacted with burn severity in complex ways to constrain N cycling after fire. In areas that burned, pH increased (at least initially) after fire, and there were non-monotonic changes in microbial biomass. Net N mineralisation also had variable responses to wetting in burned locations. These changes suggest burn severity and precipitation patterns can interact to alter N cycling rates following fire.more » « less
-
Fire severity is increasing in larch forests of the Siberian Arctic as climate warms, and initial fire impacts on tree demographic processes could be an especially important determinant of long-term forest structure and carbon (C) dynamics. We hypothesized that changes in post-fire larch recruitment impact C accumulation through tree density impacts on understory microclimate and permafrost thaw. We tested these hypotheses by quantifying C pools across a Cajander larch (Larix cajanderi Mayr.) tree density gradient within a fire perimeter near Cherskiy, Russia that burned in ~1940. Across the density gradient, from 2010 - 2017 we inventoried larch trees and harvested ground-layer vegetation to estimate above ground contribution to C pools. We also quantified snag and woody debris C pools and sampled below ground C pools (soil, fine roots, and coarse roots) in the organic + upper mineral soils. Our findings should highlight the potential for a climate-driven increase in fire severity to alter tree recruitment, successional dynamics, and C cycling in Siberian larch forests.more » « less
An official website of the United States government
