skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An exploratory study of drawings as a tool to evaluate student understanding of the Food-Energy-Water (FEW) Nexus
Abstract As future decision-makers, students must develop interdisciplinary, systems thinking skills to make effective management decisions; however, systems thinking remains challenging for many students. Here, we use the Food-Energy-Water (FEW) Nexus as a framework to examine how drawings can help students cultivate systems thinking skills. Drawings can be tools to make implicit mental models of systems connections explicit for instructors to better comprehend student learning. Our goal was to understand how drawing can help students make connections across systems compared to using only verbal explanations. In 2021, we interviewed undergraduates, asking them to draw and verbally explain the FEW Nexus. Analysis revealed that student drawings showed an increase in the number of connections that half of students could describe when compared to verbal-only explanations. Instructors may benefit from this study by recognizing areas where students might struggle to understand FEW Nexus connections, where additional course emphasis is needed, and how drawings can help assess student learning.  more » « less
Award ID(s):
2013373
PAR ID:
10507868
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Environmental Studies and Sciences
Volume:
15
Issue:
2
ISSN:
2190-6483
Format(s):
Medium: X Size: p. 235-249
Size(s):
p. 235-249
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundSTEM instructors who leverage student thinking can positively influence student outcomes and build their own teaching expertise. Leveraging student thinking involves using the substance of student thinking to inform instruction. The ways in which instructors leverage student thinking in undergraduate STEM contexts, and what enables them to do so effectively, remains largely unexplored. We investigated how undergraduate STEM faculty leverage student thinking in their teaching, focusing on faculty who engage students in work during class. ResultsFrom analyzing interviews and video of a class lesson for eight undergraduate STEM instructors, we identified a group of instructors who exhibited high levels of leveraging student thinking (high-leveragers) and a group of instructors who exhibited low levels of leveraging student thinking (low-leveragers). High-leveragers behaved as if student thinking was central to their instruction. We saw this in how they accessed student thinking, worked to interpret it, and responded in the moment and after class. High-leveragers spent about twice as much class time getting access to detailed information about student thinking compared to low-leveragers. High-leveragers then altered instructional plans from lesson to lesson and during a lesson based on their interpretation of student thinking. Critically, high-leveragers also drew on much more extensive knowledge of student thinking, a component of pedagogical content knowledge, than did low-leveragers. High-leveragers used knowledge of student thinking to create access to more substantive student thinking, shape real-time interpretations, and inform how and when to respond. In contrast, low-leveragers accessed student thinking less frequently, interpreted student thinking superficially or not at all, and never discussed adjusting the content or problems for the following lesson. ConclusionsThis study revealed that not all undergraduate STEM instructors who actively engage students in work during class are also leveraging student thinking. In other words, not all student-centered instruction is student-thinking-centered instruction. We discuss possible explanations for why some STEM instructors are leveraging student thinking and others are not. In order to realize the benefits of student-centered instruction for undergraduates, we may need to support undergraduate STEM instructors in learning how to learn from their teaching experiences by leveraging student thinking. 
    more » « less
  2. Critical thinking skills are best taught as students participate in the scientific practice of argumentation. When engaged in scientific argumentation, students are expected to engage in active listening and social collaboration through the process of negotiation and consensus building. Socioscientific issues are ideally suited for such activities. Model-Evidence-Link (MEL) diagrams provide an ideal scaffold for helping students learn to build arguments that can help them make connections between evidence and scientific explanations. In these activities students compare competing models by making plausibility judgements, then comparing how well scientific evidence supports each model. In research-based activities, these scaffolds have been shown to help students better understand scientific concepts, to shift students’ plausibility judgments, and to provide insights into how students negotiate consensus through argumentation. In this article we share both the resources and instructional methods for including MEL diagrams in the middle school classroom. 
    more » « less
  3. null (Ed.)
    Metacognition is awareness and control of thinking for learning. Strong metacognitive skills have the power to impact student learning and performance. While metacognition can develop over time with practice, many students struggle to meaningfully engage in metacognitive processes. In an evidence-based teaching guide associated with this paper ( https://lse.ascb.org/evidence-based-teaching-guides/student-metacognition ), we outline the reasons metacognition is critical for learning and summarize relevant research on this topic. We focus on three main areas in which faculty can foster students’ metacognition: supporting student learning strategies (i.e., study skills), encouraging monitoring and control of learning, and promoting social metacognition during group work. We distill insights from key papers into general recommendations for instruction, as well as a special list of four recommendations that instructors can implement in any course. We encourage both instructors and researchers to target metacognition to help students improve their learning and performance. 
    more » « less
  4. Incorporating real-life context through connections to research early in the curriculum can create meaningful learning opportunities that encourage students to engage deeply with classroom content to construct chemistry knowledge. Course-based undergraduate research experiences have been successful at integrating real-life context, but are often only incorporated into upper-level courses. To provide an additional pathway to foster interaction with research, four activities from an introductory chemistry discussion class were created to incorporate authentic research connections. Care was taken to incorporate metacognitive questions designed to help students make connections between their preexisting knowledge and course content. Marzano’s taxonomy was used to analyze the cognitive complexity of tasks, which increased in the revised activities, allowing for more opportunities for knowledge construction. Audio and written work of student groups as they worked through activities was collected. Qualitative analysis of student engagement revealed that control over the content of activities to incorporate opportunities for knowledge construction is not enough to facilitate students consciously engaging in meaningful learning. If instructors wish to promote students integrating chemistry knowledge into their existing framework, course instructors, including graduate teaching assistants, need to be trained on how to properly facilitate classroom experiences to increase the likelihood of success. 
    more » « less
  5. Food, energy and water (FEW) systems are inextricably linked, and thus, solutions to FEW nexus challenges, including water and food insecurity, require an interconnected science and policy approach framed in systems thinking. To drive these solutions, we developed an interdisciplinary, experiential graduate education program focused on innovations at the FEW nexus. As part of our program, PhD students complete a two-course sequence: (1) an experiential introduction to innovations at the FEW nexus and (2) a data practicum. The two courses are linked through an interdisciplinary FEW systems research project that begins during the first course and is completed at the end of the second course. Project deliverables include research manuscripts, grant proposals, policy memos, and outreach materials. Topics addressed in these projects include building electrification to reduce reliance on fossil fuels for heating, agrivoltaic farming to combat FEW vulnerabilities in the southwestern United States, assessment of food choices to influence sustainable dining practices, and understanding the complexities of FEW nexus research and training at the university level. Evaluation data were generated from our first three student cohorts (n = 33 students) using a mixed method, multi-informant evaluation approach, including the administration of an adapted version of a validated pre-post-survey to collect baseline and end-of-semester data. The survey assessed student confidence in the following example areas: communication, collaboration, and interdisciplinary research skills. Overall, students reported confidence growth in utilizing interdisciplinary research methods (e.g., synthesize the approaches and tools from multiple disciplines to evaluate and address a research problem), collaborating with range of professionals and communicating their research results to diverse audience. The growth in confidence in the surveyed areas aligned with the learning objectives for the two-course sequence, and the interdisciplinary project experience was continually improved based on student feedback. This two-course sequence represents one successful approach for educators to rethink the traditional siloed approach of training doctoral students working at the FEW nexus. 
    more » « less