skip to main content


This content will become publicly available on January 1, 2025

Title: Utilizing Culturally Responsive Strategies to Inspire African American Female Participation in Cybersecurity American Female Participation in Cybersecurity
The number of African American females participating in cyber fields is significantly low. Science, technology, engineering, and mathematics (STEM) education requires a new approach to student engagement to increase African American female participation in cybersecurity. The most common approach to engaging more African American females in STEM is to provide students access to professional images or role models active in STEM; however, more is needed. More race-centered strategies beyond role modeling are necessary to attract and retain African American females in STEM. Research studies show that integrating personal experiences and making cultural connections can help improve student participation in STEM from underrepresented populations. In 2021, faculty in the Center for Cybersecurity Assurance and Policy at Morgan State University developed and implemented the GenCyber ‘‘Females are Cyber Stars’’ (FACS) Summer Camp. This initiative targeted female African American students in Baltimore public middle schools. Thirty-nine girls participated in the virtual program during the summer of 2021, and 25 girls engaged in the in-person program during the summer of 2022. The program’s goals were to increase female students’ interest in cybersecurity and exposure to the security of IoT (Internet of Things) devices in a smart home environment. The GenCyber FACS Summer Camp incorporated culturally responsive strategies to engage the participants in an inclusive and interactive setting. Participants were given pre- and post-program surveys to assess learning outcomes and examine the impact of using culturally responsive teaching strategies. The results showed that the girls reported increased knowledge and a gain in interest in cybersecurity and computing. This paper discusses the summer program and curriculum, culturally responsive teaching strategies deployed, student learning outcomes, and perceptions of cultural responsiveness assessed in the GenCyber FACS Summer Camp.  more » « less
Award ID(s):
2042700
NSF-PAR ID:
10507902
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Journal of Pre-College Engineering Education Research (J-PEER)
Date Published:
Journal Name:
Journal of Pre-College Engineering Education Research (J-PEER)
ISSN:
2157-9288
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Oftentimes engineering design tasks are thought of as acultural and devoid of community inclusion and values. However, engineering design is inherently a cultural endeavor. Problems needing engineering solutions or design thinking are situated in a specific community and need community solutions. This work in progress paper describes initial efforts from a project to help elementary and middle school teachers create culturally relevant engineering design tasks for implementation in their classrooms. To integrate best practices for culturally relevant pedagogy, the engineering design framework developed by UTeach Engineering was adapted to specifically address community needs and cultural values. Changes to the framework also include culturally relevant instructional strategies for classroom implementation. To situate the engineering design steps within a culturally relevant framework questions involving communities and students’ cultural needs, values, and expectations were posed in each stage of the design process. A water filtration engineering design task was situated in the cultural concept of “Mni Wiconi” (Water is life in the Dakota language). This was taught in a summer professional development workshop for a cohort of elementary and middle school teachers, in rural North Dakota, with school districts comprised of large Native American student populations. Teachers adapted this design task for their individual classrooms and content areas (science, math, social studies, ELA) and implemented it in their classrooms in the fall of 2021. Additional support for teachers was provided with fall workshop days aimed at helping them with the facilitation of a culturally relevant engineering task. To integrate culturally relevant teaching and good engineering design tasks, the North Dakota Department of Public Instruction’s Native American Essential Understandings Teachings of our Elder’s website was used. This allowed teachers and students to have firsthand knowledge of how various science and engineering concepts are framed within the indigenous community. Professional development focused on how to situate culturally responsive teaching in engineering design. For example, in one of the school districts the water filtration task was related to increased pollution of a nearby lake which holds significant importance for the local Tribal Nation. In addition to being able to visibly witness the demand for cleaner water, the book “We are Water Protectors” written by Carole Lindstrom, was used to provide cultural grounding for the Identify and Describe stages of the engineering design framework. Case studies of how teachers incorporated the water filtration design task into their lesson plans are presented along with their suggestions on how to improve classroom implementation. Future work in the program includes teachers and their students developing engineering design tasks situated in their own communities and cultures. 
    more » « less
  2. Cybersecurity workforce development is the key to protecting information and information systems, and yet more than 30% of companies are short on security expertise. To address this need, the current authors have developed four cybersecurity education games to teach social engineering, secure online behavior, cyber defense methods, and cybersecurity first principles. These games are intended to recruit the next generation cybersecurity workforce by developing an innovative cybersecurity curriculum and pedagogical methods to provide high school students with hands-on activities in a game-based learning environment. Purdue University Northwest (PNW) offered high school summer camps for 181 high school students in June of 2016 and June of 2017. Out of 181 high school participants, 107 were underrepresented minority students, including African Americans, Hispanics, Asians, and Native Americans. To evaluate the effectiveness of the cybersecurity education games, post-camp surveys were conducted with 154 camp participants. The survey results indicated that the games were very effective in cybersecurity awareness training. Furthermore, the cybersecurity education games were more effective for male students than female students in raising student interest in computer science and cybersecurity. 
    more » « less
  3. null (Ed.)
    Research Experience for Teachers (RET) programs are National Science Foundation (NSF) funded programs designed to provide K- 12 Science, Technology, Engineering, and Mathematics (STEM) teachers with immersive, hands-on research experiences at Universities around the country. The NSF RET in nanotechnology encourages teachers to translate cutting-edge research into culturally relevant Project-Based Learning (PjBL) and engineering curriculum. Traditionally, the evaluation of RET programs focuses on the growth and development of teacher self-efficacy, engineering content knowledge gains, or classroom implementation of developed curriculum materials. However, reported methods for evaluating the impact of RETs on their female, minority student populations' high school graduation and undergraduate STEM major rates are limited. This study's objective was to compare RET high school student graduation rates and undergraduate STEM major rates across gender, race, and ethnicity to a comparison sample to determine the RET program's long-term impact on students' likelihood of pursuing STEM careers. The approach of collecting and analyzing the Texas Education Research Center Database (EdRC) data is a novel methodology for assessing RET programs' effectiveness on students. The EdRC is a repository of K-12 student data from the Texas Education Agency (TEA) and Higher Education data from the Texas Higher Education Coordinating Board (THECB). This joint database contains demographic, course registration, graduation, standardized testing, and college major, among others, for all students that attended a K-12 public school in Texas and any college in Texas, public or private. The RET program participants at Rice University (2010 – 2018) taught numerous students, a sample size of 11,240 students. A propensity score matching generated the student comparison group within the database. Students' school campus, gender, race/ethnic status, and English proficiency status were applied to produce a graduation comparison sample size of 11,240 students of Non-RET participants. Linking the TEA database to the THECB database resulted in college STEM participants and comparison sample sizes of 4,029 students. The project team conducted a logistic regression using RET status to predict high school graduation rates as a whole and by individual variables: gender, Asian American, Black, Caucasian, and Latinx students. All models were significant at p less than 0.05, with models in favor of students RET teachers. The project team conducted a logistic regression using RET status to predict student STEM undergraduate major rates as a whole and by individual variables: Gender, Asian American, Black, Caucasian, and Latinx students. African American and Caucasian models were significant at p less than 0.05; Gender, Asian American, and Latinx models were marginally significant (0.05 less than p greater than 0.1), where RET students had higher STEM major rates than matched controls. The findings demonstrate that RET programs have a long-term positive impact on the students' high school graduation rates and undergraduate STEM major rates. As teachers who participate in the RET programs are more likely to conduct courses using PjBL strategies and incorporate real-world engineering practices, female and minority students are more likely to benefit from these practices and seek careers utilizing these skills. 
    more » « less
  4. null (Ed.)
    In 2020, over 116,000 students took the Advanced Placement Computer Science Principles (AP CSP) Exam. Although Black female students have participated in AP CSP at higher rates than for the AP CSA course, their representation is still disproportionately lower than the school population of Black females. In this Experience Report, we present the early results of an NSF-sponsored effort that provides an AP CSP preparatory experience and CS career awareness to Black female students from rural, urban, and suburban communities in the state of Alabama. At the project’s core is a peer-learning community (PLC) facilitated by Black female teachers with deep knowledge of AP CSP. An intensive summer experience prepares students for the AP CSP course through culturally-responsive, project-based learning experiences designed to connect advanced computing concepts to the students’ personal lives and career aspirations. Interactions and support continue throughout the academic year to facilitate AP exam readiness. Online interactions among the PLC members serve to mitigate the barriers that young women of color typically encounter when pursuing CS education, increasing their persistence and success in CS. We examined whether students’ project participation enhances self-efficacy and perceived competency in CS, increases positive attitudes, awareness, and desire to pursue CS studies and careers, and mitigates perceived socio-cultural barriers to pursue studies and careers in CS. Our initial findings include AP CSP examination qualifying rates (87.5%) that exceed the 2019 national/statewide rates for all subgroups (including Alabama White male students), increased perceptions of Black females as belonging in CS, and gains in computing self-efficacy throughout the academic year. 
    more » « less
  5. null (Ed.)
    The overall goal of the NSF Division of Undergraduate Education (DUE) S-STEM funded "Attracting and Cultivating Cybersecurity Experts and Scholars through Scholarships" (ACCESS) program is to increase Cybersecurity-related STEM degree completion of low-income, high-achieving undergraduate students with demonstrated financial need and to generate knowledge about academic success, retention, persistence, graduation, and career pathways of these students to improve the education of future STEM workers. Specifically, ACCESS aims to contribute towards addressing the tremendous governmental and industry need for highly skilled cybersecurity experts. Program objectives include: (1) increasing annual enrollment of students in the B.S. in Computer and Information Sciences programs with specialization in Cybersecurity; (2) enhancing curricular and extra-curricular student support services and activities for students; (3) strengthening the partnerships with computer and information technology employers; and (4) investigating the impact of the curricular and co-curricular activities on student success. While significant research has been done relative to student success, retention, and persistence to graduation in STEM fields, cybersecurity is a new field of study and factors affecting student recruitment, academic success, retention, persistence to graduation within this field are not known. In year 1, students were recruited, applications were evaluated, and scholarships were awarded to nine academically talented students, beginning fall 2020. Of these students, four are female (one is from an underrepresented minority population) and five are male (three are from underrepresented minority populations). The students engage in a set of co-curriculum activities, including participation in: outreach activities; technical and career development seminars; a cybersecurity-focused student organization; and potentially, cybersecurity undergraduate research and summer internship opportunities. The paper and poster describe the background of the ACCESS program, recruitment and selection of ACCESS scholarship recipients, project activities, and challenges presented by the COVID-19 pandemic. 
    more » « less