iCn3D was initially developed as a web-based 3D molecular viewer. It then evolved from visualization into a full-featured interactive structural analysis software. It became a collaborative research instrument through the sharing of permanent, shortened URLs that encapsulate not only annotated visual molecular scenes, but also all underlying data and analysis scripts in a FAIR manner. More recently, with the growth of structural databases, the need to analyze large structural datasets systematically led us to use Python scripts and convert the code to be used in Node. js scripts. We showed a few examples of Python scripts at https://github.com/ncbi/icn3d/tree/master/icn3dpython to export secondary structures or PNG images from iCn3D. Users just need to replace the URL in the Python scripts to export other annotations from iCn3D. Furthermore, any interactive iCn3D feature can be converted into a Node. js script to be run in batch mode, enabling an interactive analysis performed on one or a handful of protein complexes to be scaled up to analysis features of large ensembles of structures. Currently available Node. js analysis scripts examples are available at https://github.com/ncbi/icn3d/tree/master/icn3dnode . This development will enable ensemble analyses on growing structural databases such as AlphaFold or RoseTTAFold on one hand and Electron Microscopy on the other. In this paper, we also review new features such as DelPhi electrostatic potential, 3D view of mutations, alignment of multiple chains, assembly of multiple structures by realignment, dynamic symmetry calculation, 2D cartoons at different levels, interactive contact maps, and use of iCn3D in Jupyter Notebook as described at https://pypi.org/project/icn3dpy .
more »
« less
Local structural features elucidate crystallization of complex structures
This dataset accompanies the “Local structural features elucidate crystallization of complex structures” preprint (https://arxiv.org/abs/2401.13765) by M. M. Martirossyan, M. Spellings, H. Pan, and J. Dshemuchadse. This dataset is built to be used in conjunction with the GitHub code (https://github.com/capecrystal/local-structural-features) for training order metrics with machine learning methods. In this work, we show that this method can distinguish different crystallographic sites in highly complex structures of varying complexity and coordination number, and it can be used to study the growth trajectories of such structures. The dataset includes self-assembly trajectories from 10 different crystal structures and 2 trajectories of the same structure assembling via different crystallization pathways. A README.txt file is included for parsing the data.
more »
« less
- Award ID(s):
- 2144094
- PAR ID:
- 10508052
- Publisher / Repository:
- Materials Data Facility
- Date Published:
- Format(s):
- Medium: X
- Location:
- Materials Data Facility
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract X-ray crystallography is the major approach for determining atomic-level protein structures. Because not all proteins can be easily crystallized, accurate prediction of protein crystallization propensity provides critical help in guiding experimental design and improving the success rate of X-ray crystallography experiments. This study has developed a new machine-learning-based pipeline that uses a newly developed deep-cascade forest (DCF) model with multiple types of sequence-based features to predict protein crystallization propensity. Based on the developed pipeline, two new protein crystallization propensity predictors, denoted as DCFCrystal and MDCFCrystal, have been implemented. DCFCrystal is a multistage predictor that can estimate the success propensities of the three individual steps (production of protein material, purification and production of crystals) in the protein crystallization process. MDCFCrystal is a single-stage predictor that aims to estimate the probability that a protein will pass through the entire crystallization process. Moreover, DCFCrystal is designed for general proteins, whereas MDCFCrystal is specially designed for membrane proteins, which are notoriously difficult to crystalize. DCFCrystal and MDCFCrystal were separately tested on two benchmark datasets consisting of 12 289 and 950 proteins, respectively, with known crystallization results from various experimental records. The experimental results demonstrated that DCFCrystal and MDCFCrystal increased the value of Matthew’s correlation coefficient by 199.7% and 77.8%, respectively, compared to the best of other state-of-the-art protein crystallization propensity predictors. Detailed analyses show that the major advantages of DCFCrystal and MDCFCrystal lie in the efficiency of the DCF model and the sensitivity of the sequence-based features used, especially the newly designed pseudo-predicted hybrid solvent accessibility (PsePHSA) feature, which improves crystallization recognition by incorporating sequence-order information with solvent accessibility of residues. Meanwhile, the new crystal-dataset constructions help to train the models with more comprehensive crystallization knowledge.more » « less
-
Two-dimensional drawing of nucleic acid structures, particularly RNA structures, is fundamental to the communication of nucleic acids research. However, manually drawing structures is laborious and infeasible for structures thousands of nucleotides long. RNAcanvas automatically arranges residues into strictly shaped stems and loops while providing robust interactive editing features, including click-and-drag layout adjustment. Drawn elements are highly customizable in a point-and-click manner, including colours, fonts, size and shading, flexible numbering, and outlining of bases. Tertiary interactions can be drawn as draggable, curved lines. Leontis-Westhof notation for depicting non-canonical base-pairs is fully supported, as well as text labels for structural features (e.g., hairpins). RNAcanvas also has many unique features and performance optimizations for large structures that cannot be correctly predicted and require manual refinement based on the researcher’s own analyses and expertise. To this end, RNAcanvas has point-and-click structure editing with real-time highlighting of complementary sequences and motif search functionality, novel features that greatly aid in the identification of putative long-range tertiary interactions, de novo analysis of local structures, and phylogenetic comparisons. For ease in producing publication quality figures, drawings can be exported in both SVG and PowerPoint formats. URL: https://rnacanvas.appmore » « less
-
A promising new route for structural biology is single-particle imaging with an X-ray Free-Electron Laser (XFEL). This method has the advantage that the samples do not require crystallization and can be examined at room temperature. However, high-resolution structures can only be obtained from a sufficiently large number of diffraction patterns of individual molecules, so-called single particles. Here, we present a method that allows for efficient identification of single particles in very large XFEL datasets, operates at low signal levels, and is tolerant to background. This method uses supervised Geometric Machine Learning (GML) to extract low-dimensional feature vectors from a training dataset, fuse test datasets into the feature space of training datasets, and separate the data into binary distributions of “single particles” and “non-single particles.” As a proof of principle, we tested simulated and experimental datasets of the Coliphage PR772 virus. We created a training dataset and classified three types of test datasets: First, a noise-free simulated test dataset, which gave near perfect separation. Second, simulated test datasets that were modified to reflect different levels of photon counts and background noise. These modified datasets were used to quantify the predictive limits of our approach. Third, an experimental dataset collected at the Stanford Linear Accelerator Center. The single-particle identification for this experimental dataset was compared with previously published results and it was found that GML covers a wide photon-count range, outperforming other single-particle identification methods. Moreover, a major advantage of GML is its ability to retrieve single particles in the presence of structural variability.more » « less
-
Abstract MotivationDeep learning has revolutionized protein tertiary structure prediction recently. The cutting-edge deep learning methods such as AlphaFold can predict high-accuracy tertiary structures for most individual protein chains. However, the accuracy of predicting quaternary structures of protein complexes consisting of multiple chains is still relatively low due to lack of advanced deep learning methods in the field. Because interchain residue–residue contacts can be used as distance restraints to guide quaternary structure modeling, here we develop a deep dilated convolutional residual network method (DRCon) to predict interchain residue–residue contacts in homodimers from residue–residue co-evolutionary signals derived from multiple sequence alignments of monomers, intrachain residue–residue contacts of monomers extracted from true/predicted tertiary structures or predicted by deep learning, and other sequence and structural features. ResultsTested on three homodimer test datasets (Homo_std dataset, DeepHomo dataset and CASP-CAPRI dataset), the precision of DRCon for top L/5 interchain contact predictions (L: length of monomer in a homodimer) is 43.46%, 47.10% and 33.50% respectively at 6 Å contact threshold, which is substantially better than DeepHomo and DNCON2_inter and similar to Glinter. Moreover, our experiments demonstrate that using predicted tertiary structure or intrachain contacts of monomers in the unbound state as input, DRCon still performs well, even though its accuracy is lower than using true tertiary structures in the bound state are used as input. Finally, our case study shows that good interchain contact predictions can be used to build high-accuracy quaternary structure models of homodimers. Availability and implementationThe source code of DRCon is available at https://github.com/jianlin-cheng/DRCon. The datasets are available at https://zenodo.org/record/5998532#.YgF70vXMKsB. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
An official website of the United States government
