skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tree diversity increases decadal forest soil carbon and nitrogen accrual
Increasing soil carbon and nitrogen storage can help mitigate climate change and sustain soil fertility1,2. A large number of biodiversity-manipulation experiments collectively suggest that high plant diversity increases soil carbon and nitrogen stocks3,4. It remains debated, however, whether such conclusions hold in natural ecosystems5-12. Here we analyse Canada's National Forest Inventory (NFI) database with the help of structural equation modelling (SEM) to explore the relationship between tree diversity and soil carbon and nitrogen accumulation in natural forests. We find that greater tree diversity is associated with higher soil carbon and nitrogen accumulation, validating inferences from biodiversity-manipulation experiments. Specifically, on a decadal scale, increasing species evenness from its minimum to maximum value increases soil carbon and nitrogen in the organic horizon by 30% and 42%, whereas increasing functional diversity enhances soil carbon and nitrogen in the mineral horizon by 32% and 50%, respectively. Our results highlight that conserving and promoting functionally diverse forests could promote soil carbon and nitrogen storage, enhancing both carbon sink capacity and soil nitrogen fertility.  more » « less
Award ID(s):
2021898
PAR ID:
10508056
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Portfolio
Date Published:
Journal Name:
Nature
Volume:
618
Issue:
7963
ISSN:
0028-0836
Page Range / eLocation ID:
94 to 101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Forests harbor extensive biodiversity and act as a strong global carbon and nitrogen sink. Although enhancing tree diversity has been shown to mitigate climate change by sequestering more carbon and nitrogen in biomass and soils in manipulative experiments, it is still unknown how varying environmental gradients, such as gradients in resource availability, mediate the effects of tree diversity on carbon and nitrogen accrual in natural forests. Here, we use Canada’s National Forest Inventory data to explore how the relationships between tree diversity and the accumulation of carbon and nitrogen in tree biomass and soils vary with resource availability and environmental stressors in natural forests. We find that the positive relationship between tree functional diversity (rather than species richness) and the accumulation of carbon in tree biomass strengthens with increasing light and soil nutrient availability. Moreover, the positive relationship between tree functional diversity and the accumulation of carbon and nitrogen in both organic and mineral soil horizons is more pronounced at sites with greater water and nutrient availabilities. Our results highlight that conserving and promoting functionally diverse forests in resource-rich environments could play a greater role than in resource-poor environments in enhancing carbon and nitrogen sequestration in Canada’s forests. 
    more » « less
  2. Abstract Planting diverse forests has been proposed as a means to increase long‐term carbon (C) sequestration while providing many co‐benefits. Positive tree diversity–productivity relationships are well established, suggesting more diverse forests will lead to greater aboveground C sequestration. However, the effects of tree diversity on belowground C storage have the potential to either complement or offset aboveground gains, especially during early stages of afforestation when potential exists for large losses in soil C due to soil decomposition. Thus, experimental tests of the effects of planted tree biodiversity on changes in whole‐ecosystem C balance are needed. Here, we present changes in above‐ and belowground C pools 6 years after the initiation of the Forests and Biodiversity experiment (FAB1), consisting of high‐density plots of one, two, five, or 12 tree species planted in a common garden. The trees included a diverse range of native species, including both needle‐leaf conifer and broadleaf angiosperm species, and both ectomycorrhizal and arbuscular mycorrhizal species. We quantified the effects of species richness, phylogenetic diversity, and functional diversity on aboveground woody C, as well as on mineral soil C accumulation, fine root C, and soil aggregation. Surprisingly, changes in aboveground woody C pools were uncorrelated to changes in mineral soil C pools, suggesting that variation in soil C accumulation was not driven by the quantity of plant litter inputs. Aboveground woody C accumulation was strongly driven by species and functional identity; however, plots with higher species richness and functional diversity accumulated more C in aboveground wood than expected based on monocultures. We also found weak but significant effects of tree species richness, identity, and mycorrhizal type on soil C accumulation. To assess the role of the microbial community in mediating these effects, we further compared changes in soil C pools to phospholipid fatty acid (PLFA) profiles. Soil C pools and accumulation were more strongly correlated with specific microbial clades than with total microbial biomass or plant diversity. Our results highlight rapidly emerging and microbially mediated effects of tree biodiversity on soil C storage in the early years of afforestation that are independent of gains in aboveground woody biomass. 
    more » « less
  3. Abstract Forest canopy complexity (i.e., the three‐dimensional structure of the canopy) is often associated with increased species diversity as well as high primary productivity across natural forests. However, canopy complexity, tree diversity, and productivity are often confounded in natural forests, and the mechanisms of these relationships remain unclear. Here, we used two large tree diversity experiments in North America to assess three hypotheses: (1) increasing tree diversity leads to increased canopy complexity, (2) canopy complexity is positively related to tree productivity, and (3) the relationship between tree diversity and tree productivity is indirect and driven by the positive effects of canopy complexity. We found that increasing tree diversity from monocultures to mixtures of 12 species increases canopy complexity and productivity by up to 71% and 73%, respectively. Moreover, structural equation modeling indicates that the effects of tree diversity on productivity are indirect and mediated primarily by changes in internal canopy complexity. Ultimately, we suggest that increasing canopy complexity can be a major mechanism by which tree diversity enhances productivity in young forests. 
    more » « less
  4. Abstract A central role for nature-based solution is to identify optimal management practices to address environmental challenges, including carbon sequestration and biodiversity conservation. Inorganic fertilization increases plant aboveground biomass but often causes a tradeoff with plant diversity loss. It remains unclear, however, whether organic fertilization, as a potential nature-based solution, could alter this tradeoff by increasing aboveground biomass without plant diversity loss. Here we compile data from 537 experiments on organic and inorganic fertilization across grasslands and croplands worldwide to evaluate the responses of aboveground biomass, plant diversity, and soil organic carbon (SOC). Both organic and inorganic fertilization increase aboveground biomass by 56% and 42% relative to ambient, respectively. However, only inorganic fertilization decreases plant diversity, while organic fertilization increases plant diversity in grasslands with greater soil water content. Moreover, organic fertilization increases SOC in grasslands by 19% and 15% relative to ambient and inorganic fertilization, respectively. The positive effect of organic fertilization on SOC increases with increasing mean annual temperature in grasslands, a pattern not observed in croplands. Collectively, our findings highlight organic fertilization as a potential nature-based solution that can increase two ecosystem services of grasslands, forage production, and soil carbon storage, without a tradeoff in plant diversity loss. 
    more » « less
  5. The temporal stability of forest productivity is a key ecosystem function and an essential service to humanity. Plot-scale tree diversity experiments with observations over 10 to 11 y indicate that tree diversity increases stability under various environmental changes. However, it remains unknown whether these small-scale experimental findings are relevant to the longer-term stability of natural forests. Using 7,500 natural forest plots across much of Canada, monitored over three to four decades on average, we provide strong evidence that higher temporal stability (defined as the mean productivity divided by its SD over time) is consistently associated with greater tree functional, phylogenetic, and taxonomic diversity across all lengths of observations. Specifically, increasing functional diversity from its minimum to maximum values increases stability, mean productivity, and the temporal SD of productivity by 14%, 36%, and 28%, respectively. Our results highlight that the promotion of functionally, phylogenetically, and/or taxonomically diverse forests could enhance the long-term productivity and stability of natural forests. 
    more » « less