skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Monolithic silicon for high spatiotemporal translational photostimulation
Electrode-based electrical stimulation underpins several clinical bioelectronic devices, including deep-brain stimulators and cardiac pacemakers. However, leadless multisite stimulation is constrained by the technical difficulties and spatial-access limitations of electrode arrays. Optogenetics offers optically controlled random access with high spatiotemporal capabilities, but clinical translation poses challenges. Here we show tunable spatiotemporal photostimulation of cardiac systems using a non-genetic platform based on semiconductor-enabled biomodulation interfaces. Through spatiotemporal profiling of photoelectrochemical currents, we assess the magnitude, precision, accuracy and resolution of photostimulation in four leadless silicon-based monolithic photoelectrochemical devices. We demonstrate the optoelectronic capabilities of the devices through optical overdrive pacing of cultured cardiomyocytes (CMs) targeting several regions and spatial extents, isolated rat hearts in a Langendorff apparatus, in vivo rat hearts in an ischaemia model and an in vivo mouse heart model with transthoracic optical pacing. We also perform the first, to our knowledge, optical override pacing and multisite pacing of a pig heart in vivo. Our systems are readily adaptable for minimally invasive clinical procedures using our custom endoscopic delivery device, with which we demonstrate closed-thoracic operations and endoscopic optical stimulation. Our results indicate the clinical potential of the leadless, lightweight and multisite photostimulation platform as a pacemaker in cardiac resynchronization therapy (CRT), in which lead-placement complications are common.  more » « less
Award ID(s):
2105321 2121044 2128140
PAR ID:
10508271
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Nature
Volume:
626
Issue:
8001
ISSN:
0028-0836
Page Range / eLocation ID:
990 to 998
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Bioelectronic devices that allow simultaneous accurate monitoring and control of the spatiotemporal patterns of cardiac activity provide an effective means to understand the mechanisms and optimize therapeutic strategies for heart disease. Optogenetics is a promising technology for cardiac research due to its advantages such as cell‐type selectivity and high space‐time resolution, but its efficacy is limited by the insufficient number of modulation channels and lack of simultaneous spatiotemporal mapping capabilities in current implantable cardiac optogenetics tools available for in vivo investigations. Here, soft implantable electro‐optical cardiac devices integrating multilayered highly uniform arrays of transparent microelectrodes and multicolor light‐emitting diodes in thin, flexible platforms are designed for mechanically compliant high‐content high‐precision electrical mapping and single‐/multi‐site optogenetics and electrical stimulation without light‐induced artifacts. Systematic benchtop characterizations, together with ex vivo and in vivo evaluations on healthy and diseased small animal hearts and human cardiac slices demonstrate their functionalities in real‐time spatiotemporal mapping and control of cardiac rhythm and function, with broad applications in basic and ultimately clinical cardiology. 
    more » « less
  2. Transparent microelectrode arrays (MEAs) that allow multimodal investigation of the spatiotemporal cardiac characteristics are important in studying and treating heart disease. Existing implantable devices, however, are designed to support chronic operational lifetimes and require surgical extraction when they malfunction or are no longer needed. Meanwhile, bioresorbable systems that can self-eliminate after performing temporary functions are increasingly attractive because they avoid the costs/risks of surgical extraction. We report the design, fabrication, characterization, and validation of a soft, fully bioresorbable, and transparent MEA platform for bidirectional cardiac interfacing over a clinically relevant period. The MEA provides multiparametric electrical/optical mapping of cardiac dynamics and on-demand site-specific pacing to investigate and treat cardiac dysfunctions in rat and human heart models. The bioresorption dynamics and biocompatibility are investigated. The device designs serve as the basis for bioresorbable cardiac technologies for potential postsurgical monitoring and treating temporary patient pathological conditions in certain clinical scenarios, such as myocardial infarction, ischemia, and transcatheter aortic valve replacement. 
    more » « less
  3. Untethered electrical stimulation or pacing of the heart is of critical importance in addressing the pressing needs of cardiovascular diseases in both clinical therapies and fundamental studies. Among various stimulation methods, light illumination–induced electrical stimulation via photoelectric effect without any genetic modifications to beating cells/tissues or whole heart has profound benefits. However, a critical bottleneck lies in the lack of a suitable material with tissue-like mechanical softness and deformability and sufficient optoelectronic performances toward effective stimulation. Here, we introduce an ultrathin (<500 nm), stretchy, and self-adhesive rubbery bio-optoelectronic stimulator (RBOES) in a bilayer construct of a rubbery semiconducting nanofilm and a transparent, stretchable gold nanomesh conductor. The RBOES could maintain its optoelectronic performance when it was stretched by 20%. The RBOES was validated to effectively accelerate the beating of the human induced pluripotent stem cell–derived cardiomyocytes. Furthermore, acceleration of ex vivo perfused rat hearts by optoelectronic stimulation with the self-adhered RBOES was achieved with repetitive pulsed light illumination. 
    more » « less
  4. null (Ed.)
    Abstract Life‐threatening ventricular arrhythmias and sudden cardiac death are often preceded by cardiac alternans, a beat‐to‐beat oscillation in the T‐wave morphology or duration. However, given the spatiotemporal and structural complexity of the human heart, designing algorithms to effectively suppress alternans and prevent fatal rhythms is challenging. Recently, an antiarrhythmic constant diastolic interval pacing protocol was proposed and shown to be effective in suppressing alternans in 0‐, 1‐, and 2‐dimensional in silico studies as well as in ex vivo whole heart experiments. Herein, we provide a systematic review of the electrophysiological conditions and mechanisms that enable constant diastolic interval pacing to be an effective antiarrhythmic pacing strategy. We also demonstrate a successful translation of the constant diastolic interval pacing protocol into an ECG‐based real‐time control system capable of modulating beat‐to‐beat cardiac electrical activity and preventing alternans. Furthermore, we present evidence of the clinical utility of real‐time alternans suppression in reducing arrhythmia susceptibility in vivo. We provide a comprehensive overview of this promising pacing technique, which can potentially be translated into a clinically viable device that could radically improve the quality of life of patients experiencing abnormal cardiac rhythms. 
    more » « less
  5. Multiparametric investigation of cardiac physiology is crucial for the diagnosis and therapy of heart disease. However, no method exists to simultaneously map multiple parameters that govern cardiac (patho)physiology from beating hearts in vivo. Here, we present a cardiac sensing platform that addresses this challenge, functioning with a wireless interface. Advanced fabrication and assembling strategies enable the heterogeneous integration of transparent microelectrodes, light-emitting diodes, photodiodes, and optical filters into a multilayer array structure on soft substrates. The microelectrodes exhibit superior electrochemical performance for measuring electrical potentials and excellent transparency for co-localized fluorescence measurement. The device shows excellent biocompatibility and records the fluorescence of calcium reporter with performance comparable to imaging cameras. Multiparametric in vivo mapping of electrical excitation, calcium dynamics, and their combined effects on cardiac excitation-contraction coupling is demonstrated during normal rhythm, arrhythmia, and treatment. This technology offers potential widespread use in cardiac research to support scientific discoveries and advance clinical life-saving diagnostics and therapies. 
    more » « less