Modern microprocessor performance is limited by local hot spots induced at high frequency by busy integrated circuit elements such as the clock generator. Locally embedded thermoelectric devices (TEDs) are proposed to perform active cooling whereby thermoelectric effects enhance passive cooling by the Fourier law in removing heat from the hot spot to colder regions. To mitigate transient heating events and improve temperature stability, we propose a novel analytical solution that describes the temperature response of a periodically heated hot spot that is actively cooled by a TED driven electrically at the same frequency. The analytical solution that we present is validated by experimental data from frequency domain thermal reflectance (FDTR) measurements made directly on an actively cooled Si thermoelectric device where the pump laser replicates the transient hot spot. We herein demonstrate a practical method to actively cancel the transient temperature variations on circuit elements with TEDs. This result opens a new path to optimize the design of cooling systems for transient localized hot spots in integrated circuits.
more » « less- NSF-PAR ID:
- 10508324
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Advancements in electronic device fabrication with increasing integration levels have resulted in very high device densities. This has led to higher power dissipation and heat fluxes, increasing integrated circuit (IC) operating temperature. High and nonuniform heat generation degrades device and system performance. Therefore, thermal management to keep ICs within prescribed temperature limits is an important challenge for reliable and economic performance. Cooling techniques, including liquid coolants and air conditioning (AC), have been utilized to remove heat at the package and system level. However, these techniques must overcome high thermal impedances and require complex integration, while global cooling is generally wasteful, inefficient, and expensive. To improve thermal management, we have developed Si microthermoelectric coolers (μTECs) with areas as small 1E−5 cm^2 that can be integrated on -chip near local hot spots using the standard fabrication processes. While Si μTECs cannot achieve low base temperatures, they can actively pump relatively high heat fluxes directly to a heat sink, thus reducing local temperature increases and allowing targeted rather than global waste heat removal. We demonstrate μTECs that can pump up to 43 W/cm^2 of locally generated excess heat with no increase in chip temperature.more » « less
-
Abstract Initial hot spot temperatures and temperature evolutions for 4 polymer‐bound explosives under shock compression by laser‐driven flyer plates at speeds from 1.5–4.5 km s−1are presented. A new averaging routine allows for improved signal to noise in shock compressed impactor experiments and yields temperature dynamics which are more accurate than has been previously available. The PBX formulations studied here consist of either pentaerythritol tetranitrate (PETN), 1,3,5‐trinitro‐1,3,5‐triazinane (RDX), 2,4,6‐trinitrotoluene (TNT), or 1,3,5‐triamino‐2,4,6‐trinitrobenzene (TATB) in a 80/20 wt.% mixture with a silicone elastomer binder. The temperature dynamics demonstrate a unique shock strength dependence for each base explosive. The initial hot spot temperature and its evolution in time are shown to be indicative of chemistry occurring within the reaction zone of the four explosives. The number density of hot spots is qualitatively inferred from the spatially‐averaged emissivity and appears to increase exponentially with shock strength. An increased emissivity for formulations consisting of TNT and TATB is consistent with carbon‐rich explosives and in increased hot spot volume. Qualitative conclusions about sensitivity were drawn from the initial hot spot temperature and rate at which the number of hot spots appear to grow.
-
Data Center hybrid air/liquid cooling systems such as rear door heat exchangers, overhead and in row cooling systems enable localized, on-demand cooling, or “smart cooling.” At the heart of all hybrid cooling systems is an air to liquid cross flow heat exchanger that regulates the amount of cooling delivered by the system by modulating the liquid or air flows and/or temperatures. Due the central role that the heat exchanger plays in the system response, understanding the transient response of the heat exchanger is crucial for the precise control of hybrid cooling system. This paper reports on the transient experimental characterization of heat exchangers used in data centers applications. An experimental rig designed to introduce controlled transient perturbations in temperature and flow on the inlet air and liquid flow streams of a 12 in. × 12 in. heat exchanger test core is discussed. The conditioned air is delivered to the test core by a suction wind tunnel with upstream air heaters and a frequency variable axial blower to allow the control of air flow rate and bulk temperature. The conditioned water is delivered to the test core by a water delivery system consisting of two separate water circuits, one delivering cold water, and the other hot water. By switching from one circuit to the other or mixing water from both circuits, the rig is capable of generating step, ramp and frequency perturbations in water temperature at constant flow or step, ramp or frequency perturbations in water flow at constant temperature or combinations of temperature and water flow perturbations. Experimental data are presented for a 12×12 heat exchanger core with a single liquid pass under different transient perturbationsmore » « less
-
This work proposes a new dynamic thermal and reliability management framework via task mapping and migration to improve thermal performance and reliability of commercial multi-core processors considering workload-dependent thermal hot spot stress. The new method is motivated by the observation that different workloads activate different spatial power and thermal hot spots within each core of processors. Existing run-time thermal management, which is based on on-chip location-fixed thermal sensor information, can lead to suboptimal management solutions as the temperatures provided by those sensors may not be the true hot spots. The new method, called Hot-Trim, utilizes a machine learning-based approach to characterize the power density hot spots across each core, then a new task mapping/migration scheme is developed based on the hot spot stresses. Compared to existing works, the new approach is the first to optimize VLSI reliabilities by exploring workload-dependent power hot spots. The advantages of the proposed method over the Linux baseline task mapping and the temperature-based mapping method are demonstrated and validated on real commercial chips. Experiments on a real Intel Core i7 quad-core processor executing PARSEC-3.0 and SPLASH-2 benchmarks show that, compared to the existing Linux scheduler, core and hot spot temperature can be lowered by 1.15 to 1.31C. In addition, Hot-Trim can improve the chip's EM, NBTI and HCI related reliability by 30.2%, 7.0% and 31.1% respectively compared to Linux baseline without any performance degradation. Furthermore, it improves EM and HCI related reliability by 29.6% and 19.6% respectively, and at the same time even further reduces the temperature by half a degree compared to the conventional temperature-based mapping technique.more » « less
-
Abstract The Global Moving Hotspot Reference Frame (GMHRF) has been claimed to fit hot spot tracks better than the fixed hot spot approximation mainly because the GMHRF predicts ≈1,000 km southward motion through the mantle of the Hawaiian mantle plume over the past 80 Ma. As the GMHRF is determined by starting at present and calculating backward in time, it should be most accurate and reliable for the recent geologic past. Here we compare the fit of the GMHRF and of fixed hot spots to the observed trends of young tracks of hot spots. Surprisingly, we find that the GMHRF fits the data significantly worse (
p = 0.005) than does the fixed hot spot approximation. Thus, either plume conduits are not passively advected with the mantle flow calculated for the GMHRF or Earth's actual mantle velocity field differs substantially from that calculated for the GMHRF.