Abstract Global modeling of aerosol‐particle number and size is important for understanding aerosol effects on Earth's climate and air quality. Fine‐resolution global models are desirable for representing nonlinear aerosol‐microphysical processes, their nonlinear interactions with dynamics and chemistry, and spatial heterogeneity. However, aerosol‐microphysical simulations are computationally demanding, which can limit the achievable global horizontal resolution. Here, we present the first coupling of the TwO‐Moment Aerosol Sectional (TOMAS) microphysics scheme with the High‐Performance configuration of the GEOS‐Chem model of atmospheric composition (GCHP), a coupling termed GCHP‐TOMAS. GCHP's architecture allows massively parallel GCHP‐TOMAS simulations including on the cloud, using hundreds of computing cores, faster runtimes, more memory, and finer global horizontal resolution (e.g., 25 km × 25 km, 7.8 × 105model columns) versus the previous single‐node capability of GEOS‐Chem‐TOMAS (tens of cores, 200 km × 250 km, 1.3 × 104model columns). GCHP‐TOMAS runtimes have near‐ideal scalability with computing‐core number. Simulated global‐mean number concentrations increase (dominated by free‐tropospheric over‐ocean sub‐10‐nm‐diameter particles) toward finer GCHP‐TOMAS horizontal resolution. Increasing the horizontal resolution from 200 km × 200–50 km × 50 km increases the global monthly mean free‐tropospheric total particle number by 18.5%, and over‐ocean sub‐10‐nm‐diameter particles by 39.8% at 4‐km altitude. With a cascade of contributing factors, free‐tropospheric particle‐precursor concentrations increase (32.6% at 4‐km altitude) with resolution, promoting new‐particle formation and growth that outweigh coagulation changes. These nonlinear effects have the potential to revise current understanding of processes controlling global aerosol number and aerosol impacts on Earth's climate and air quality. 
                        more » 
                        « less   
                    
                            
                            Parameterization of size of organic and secondary inorganic aerosol for efficient representation of global aerosol optical properties
                        
                    
    
            Abstract. Accurate representation of aerosol optical properties is essential for the modeling and remote sensing of atmospheric aerosols. Although aerosol optical properties are strongly dependent upon the aerosol size distribution, the use of detailed aerosol microphysics schemes in global atmospheric models is inhibited by associated computational demands. Computationally efficient parameterizations for aerosol size are needed. Inthis study, airborne measurements over the United States (DISCOVER-AQ) andSouth Korea (KORUS-AQ) are interpreted with a global chemical transport model (GEOS-Chem) to investigate the variation in aerosol size when organicmatter (OM) and sulfate–nitrate–ammonium (SNA) are the dominant aerosol components. The airborne measurements exhibit a strong correlation (r=0.83) between dry aerosol size and the sum of OM and SNA mass concentration (MSNAOM). A global microphysical simulation(GEOS-Chem-TOMAS) indicates that MSNAOM and theratio between the two components (OM/SNA) are the major indicators for SNA and OM dry aerosol size. A parameterization of the dry effective radius (Reff) for SNA and OM aerosol is designed to represent the airborne measurements (R2=0.74; slope = 1.00) and the GEOS-Chem-TOMAS simulation (R2=0.72; slope = 0.81). When applied in the GEOS-Chem high-performance model, this parameterization improves the agreement between the simulated aerosol optical depth (AOD) and the ground-measured AOD from the Aerosol Robotic Network (AERONET; R2 from 0.68 to 0.73 and slope from 0.75 to 0.96). Thus, this parameterization offers a computationally efficient method to represent aerosol size dynamically. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1950327
- PAR ID:
- 10508479
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Copernicus
- Date Published:
- Journal Name:
- Atmospheric Chemistry and Physics
- Volume:
- 23
- Issue:
- 9
- ISSN:
- 1680-7324
- Page Range / eLocation ID:
- 5023 to 5042
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We present a new volatility basis set (VBS) representation of aromatic secondary organic aerosol (SOA) for atmospheric chemistry models by fitting a statistical oxidation model with aerosol microphysics (SOM‐TOMAS) to results from laboratory chamber experiments. The resulting SOM‐VBS scheme also including previous work on SOA formation from semi‐ and intermediate volatile organic compounds (S/IVOCs) is implemented in the GEOS‐Chem chemical transport model and applied to simulation of observations from the Korea‐United States Air Quality Study (KORUS‐AQ) field campaign over South Korea in May–June 2016. Our SOM‐VBS scheme can simulate the KORUS‐AQ organic aerosol (OA) observations from aircraft and surface sites better than the default schemes used in GEOS‐Chem including for vertical profiles, diurnal cycle, and partitioning between hydrocarbon‐like OA and oxidized OA. Our results confirm the important contributions of oxidized primary OA and aromatic SOA found in previous analyses of the KORUS‐AQ data and further show a large contribution from S/IVOCs. Model source attribution of OA in surface air over South Korea indicates one third from domestic anthropogenic emissions, with a large contribution from toluene and xylenes, one third from external anthropogenic emissions, and one third from natural emissions.more » « less
- 
            Abstract We investigate and assess how well a global chemical transport model (GEOS‐Chem) simulates submicron aerosol mass concentrations in the remote troposphere. The simulated speciated aerosol (organic aerosol (OA), black carbon, sulfate, nitrate, and ammonium) mass concentrations are evaluated against airborne observations made during all four seasons of the NASA Atmospheric Tomography Mission (ATom) deployments over the remote Pacific and Atlantic Oceans. Such measurements over pristine environments offer fresh insights into the spatial (Northern [NH] and Southern Hemispheres [SH], Atlantic, and Pacific Oceans) and temporal (all seasons) variability in aerosol composition and lifetime, away from continental sources. The model captures the dominance of fine OA and sulfate aerosol mass concentrations in all seasons. There is a high bias across all species in the ATom‐2 (NH winter) simulations; implementing recent updates to the wet scavenging parameterization improves our simulations, eliminating the large ATom‐2 (NH winter) bias, improving the ATom‐1 (NH summer) and ATom‐3 (NH fall) simulations, but producing a model underestimate in aerosol mass concentrations for the ATom‐4 (NH spring) simulations. Following the wet scavenging updates, simulated global annual mean aerosol lifetimes vary from 1.9 to 4.0 days, depending on species. Aerosol lifetimes in each hemisphere vary by season, and are longest for carbonaceous aerosol during the southern hemispheric fire season. The updated wet scavenging parameterization brings simulated concentrations closer to observations and reduces global aerosol lifetime for all species, indicating the sensitivity of global aerosol lifetime and burden to wet removal processes.more » « less
- 
            Abstract. Tropospheric ozone is a major air pollutant and greenhouse gas. It is also the primary precursor of OH, the main tropospheric oxidant. Global atmospheric chemistry models show large differences in their simulations of tropospheric ozone budgets. Here we implement the widely used GEOS-Chem atmospheric chemistry module as an alternative to CAM-chem within the Community Earth System Model version 2 (CESM2). We compare the resulting GEOS-Chem and CAM-chem simulations of tropospheric ozone and related species within CESM2 to observations from ozonesondes, surface sites, the ATom-1 aircraft campaign over the Pacific and Atlantic, and the KORUS-AQ aircraft campaign over the Seoul Metropolitan Area. We find that GEOS-Chem and CAM-chem within CESM2 have similar tropospheric ozone budgets and concentrations usually within 5 ppb but important differences in the underlying processes including (1) photolysis scheme (no aerosol effects in CAM-chem), (2) aerosol nitrate photolysis, (3) N2O5 cloud uptake, (4) tropospheric halogen chemistry, and (5) ozone deposition to the oceans. Global tropospheric OH concentrations are the same in both models, but there are large regional differences reflecting the above processes. Carbon monoxide is lower in CAM-chem (and lower than observations), at least in part because of higher OH concentrations in the Northern Hemisphere and insufficient production from isoprene oxidation in the Southern Hemisphere. CESM2 does not scavenge water-soluble gases in convective updrafts, leading to some upper-tropospheric biases. Comparison to KORUS-AQ observations shows an overestimate of ozone above 4 km altitude in both models, which at least in GEOS-Chem is due to inadequate scavenging of particulate nitrate in convective updrafts in CESM2, leading to excessive NO production from nitrate photolysis. The KORUS-AQ comparison also suggests insufficient boundary layer mixing in CESM2. This implementation and evaluation of GEOS-Chem in CESM2 contribute to the MUSICA vision of modularizing tropospheric chemistry in Earth system models.more » « less
- 
            Abstract. Marine emissions of dimethyl sulfide (DMS) and the subsequent formation of its oxidation products methanesulfonic acid (MSA) and sulfuric acid (H2SO4) are well-known natural precursors of atmospheric aerosols, contributing to particle mass and cloud formation over ocean and coastal regions. Despite a long-recognized and well-studied role in the marine troposphere, DMS oxidation chemistry remains a work in progress within many current air quality and climate models, with recent advances exploring heterogeneous chemistry and uncovering previously unknown intermediate species. With the identification of additional DMS oxidation pathways and intermediate species that influence the eventual fate of DMS, it is important to understand the impact of these pathways on the overall sulfate aerosol budget and aerosol size distribution. In this work, we update and evaluate the DMS oxidation mechanism of the chemical transport model GEOS-Chem by implementing expanded DMS oxidation pathways in the model. These updates include gas- and aqueous-phase reactions, the formation of the intermediates dimethyl sulfoxide (DMSO) and methanesulfinic acid (MSIA), and cloud loss and aerosol uptake of the recently quantified intermediate hydroperoxymethyl thioformate (HPMTF). We find that this updated mechanism collectively decreases the global mean surface-layer gas-phase sulfur dioxide (SO2) mixing ratio by 40 % and enhances the sulfate aerosol (SO42-) mixing ratio by 17 %. We further perform sensitivity analyses exploring the contribution of cloud loss and aerosol uptake of HPMTF to the overall sulfur budget. Comparing modeled concentrations to available observations, we find improved biases relative to previous studies. To quantify the impacts of these chemistry updates on global particle size distributions and the mass concentration, we use the TwO-Moment Aerosol Sectional (TOMAS) aerosol microphysics module coupled to GEOS-Chem and find that changes in particle formation and growth affect the size distribution of aerosol. With this new DMS-oxidation scheme, the global annual mean surface-layer number concentration of particles with diameters smaller than 80 nm decreases by 16.8 %, with cloud loss processes related to HPMTF being mostly responsible for this reduction. However, the global annual mean number of particles larger than 80 nm (corresponding to particles capable of acting as cloud condensation nuclei, CCN) increases by 3.8 %, suggesting that the new scheme promotes seasonal particle growth to these sizes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    