The summertime surface ozone (O3) concentrations over Southeast Michigan (SEMI) often exceed 70 ppbv. However, the associated O3 formation regime is still not well known. In this study, we examined the chemical drivers of O3 exceedances in SEMI, based on the Michigan-Ontario Ozone Source Experiment (MOOSE) field campaign during the period of May 20 – June 30, 2021. We employed a zero-dimensional (0-D) box model, which was constrained by measurements of meteorology and trace gas concentrations during MOOSE. Our model simulations demonstrated that the formaldehyde to nitrogen dioxide ratio (HCHO/NO2) for the transition between the VOC- and NOx-limited O3 production regimes was 3.0 ± 0.3 (mean ± 1σ) in SEMI. The midday (12:00-16:00) averaged HCHO/NO2 ratio during MOOSE was 1.62 ± 1.03, suggesting that O3 production in SEMI was likely limited by VOC emissions. Our study has significant implications for air quality policy and the design of effective O3 pollution control strategies through ground-based HCHO/NO2 measurements and model simulations.
more »
« less
Examining the Summertime Ozone Formation Regime in Southeast Michigan Using MOOSE Ground‐Based HCHO/NO2 Measurements and F0AM Box Model
Abstract Ambient ozone (O3) concentrations in Southeast Michigan (SEMI) can exceed the U.S. National Ambient Air Quality Standard. Despite past efforts to measure O3precursors and elucidate reaction mechanisms, changing emission patterns and atmospheric composition in SEMI warrant new measurements and updated mechanisms to understand the causes of observed O3exceedances. In this study, we examine the chemical drivers of O3exceedances in SEMI, based on the Phase I MOOSE (Michigan‐Ontario Ozone Source Experiment) field study performed during May to June 2021. A zero‐dimensional (0‐D) box model is constrained with measurement data of meteorology and trace gas concentrations. Box model sensitivity simulations suggest that the formaldehyde to nitrogen dioxide ratio (HCHO/NO2) for the transition between the volatile organic compounds (VOCs)‐ and nitrogen oxides (NOx)‐limited O3production regimes is 3.0 ± 0.3 in SEMI. The midday (12:00–16:00) averaged HCHO/NO2ratio during the MOOSE Phase I study is 1.62 ± 1.03, suggesting that O3production in SEMI is limited by VOC emissions. This finding implies that imposing stricter regulations on VOC emissions should be prioritized for the SEMI O3nonattainment area. This study, through its use of ground‐based HCHO/NO2ratios and box modeling to assess O3‐VOC‐NOxsensitivities, has significant implications for air quality policy and the design of effective O3pollution control strategies, especially in O3nonattainment areas.
more »
« less
- Award ID(s):
- 2126097
- PAR ID:
- 10508549
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Journal of geophysical research Atmospheres
- Volume:
- 128
- Issue:
- 19
- ISSN:
- 2169-8996
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract An extensive set of primary and secondary pollutants was measured at a ground site in a remote location in the Yellow River Delta, China during the Ozone Photochemistry and Export from China Experiment (OPECE) from March to April 2018. The measurements include volatile organic compounds (VOCs), peroxyacyl nitrates (PANs), ozone (O3), particulate species, nitrogen oxides (NOx), and SO2. Observed VOC mixing ratios were comparable to those measured in heavily polluted cities in the U.S. and China. The VOC source signatures suggest a strong influence from Oil and Natural Gas (O&NG) emissions with potentially large contributions from Liquified Petroleum Gas (LPG) sources as well. Consistently elevated concentrations of O3, PAN, and its rarely measured homologs peroxybenzoylic nitric anhydride (PBzN) and peroxyacrylic nitric anhydride (APAN) at the OPECE site indicate complex photochemistry in a heterogeneous VOC environment. Diagnostic 0‐D box model simulations are used to investigate the budgets of ROx(OH + HO2 + RO2), and the rate and efficiency of O3production. Model sensitivity calculations indicate that O3production at OPECE site is VOC limited in spring. This suggests that reduction in VOCs should be a priority for reducing O3, where production and fugitive emissions from O&NG provide an attractive target. While initial reductions in NOxmight increase O3production, reduction of NOxalong with VOCs will be a necessary step to achieve long‐term ozone reduction.more » « less
-
Abstract High ozone concentrations have become the major summertime air quality problem in China. Extensive in situ observations are deployed for developing strategies to effectively control the emissions of ozone precursors, that is, nitrogen oxides (NOX = NO + NO2) and volatile organic compounds (VOCs). The modeling analysis of in situ observations often makes uses of the dependence of ozone peak concentration on NOXand VOC emissions, because ozone observations are among the most widely available air quality measurements. To extract more information from regulatory ozone observations, we extend the ozone‐precursor relationship to ozone peak time in this study. We find that the sensitivities of ozone peak time and concentration are complementary for regions with large anthropogenic emissions such as China. The ozone peak time is sensitive to both VOC and NOXemissions, and the sensitivity is nearly linear in the transition regime of ozone production compared to the changing ozone peak concentration sensitivity in this regime, making the diagnostics of ozone peak time particularly valuable. The extended ozone‐precursor relationships can be readily applied to understand the effects on ozone by emission changes of NOXand VOC and to assess potential biases of NOXand VOC emission inventories. These observation constraints based on regulatory ozone observations can complement the other measurement and modeling analysis methods nicely. Furthermore, we suggest that the ozone peak time sensitivity we discussed here to be used as a model evaluation measure before the empirical kinetic modeling approach (EKMA) diagram is applied to understand the effectiveness of emission control on ozone concentrations.more » « less
-
The Michigan–Ontario Ozone Source Experiment (MOOSE) is an international air quality field study that took place at the US–Canada Border region in the ozone seasons of 2021 and 2022. MOOSE addressed binational air quality issues stemming from lake breeze phenomena and transboundary transport, as well as local emissions in southeast Michigan and southern Ontario. State-of-the-art scientific techniques applied during MOOSE included the use of multiple advanced mobile laboratories equipped with real-time instrumentation; high-resolution meteorological and air quality models at regional, urban, and neighborhood scales; daily real-time meteorological and air quality forecasts; ground-based and airborne remote sensing; instrumented Unmanned Aerial Vehicles (UAVs); isotopic measurements of reactive nitrogen species; chemical fingerprinting; and fine-scale inverse modeling of emission sources. Major results include characterization of southeast Michigan as VOC-limited for local ozone formation; discovery of significant and unaccounted formaldehyde emissions from industrial sources; quantification of methane emissions from landfills and leaking natural gas pipelines; evaluation of solvent emission impacts on local and regional ozone; characterization of the sources of reactive nitrogen and PM2.5; and improvements to modeling practices for meteorological, receptor, and chemical transport models.more » « less
-
Surface ozone (O3) levels in Southeast Michigan (SEMI) exceeds U.S. National Ambient Air Quality Standards (NAAQS), posing risks to human health and agroecosystems. SEMI, a relatively small region in the state of Michigan, contains a majority of anthropogenic emission sources and more than half of the state’s population, and is also prone to long-range and transboundary pollutant transport. Understanding the physical and chemical drivers of elevated O3 through detailed and innovative modeling studies are crucial to address the issue. In this study, we explore the distribution of O3 and its precursors (e.g., NOx & VOCs) over SEMI for the summer of 2021 using the 3-D chemistry-climate model, MUSICAv0 (Multi-Scale Infrastructure for Chemistry and Aerosols, Version 0). Model simulations are evaluated with Michigan-Ontario Ozone Source Experiment (MOOSE) field campaign measurements. A finer horizontal resolution of ~7 km x 7km in MUSICAv0 was developed over Michigan to better understand the local-scale impacts of chemical and dynamic complexity existing in SEMI. MUSICAv0 with the refined model grid shows excellent skill in capturing diurnal variations of temperature and O3, but shows larger variations for nitrogen dioxide (NO2). The MUSICAv0 results for NOx and its oxidation products (e.g., HNO3) were improved by applying a diurnal cycle to anthropogenic nitric oxide (NO) emissions, as global models generally do not include diurnal variation of emissions. The source attribution of O3 in SEMI is also quantified using a carbon monoxide (CO) tagging method. Optimization of a regionally-refined, coupled model such as MUSICAv0, through resolution and emission modeling studies, have significant implications for air quality projects at the local-scale and the design of effective surface O3 mitigation strategies.more » « less