Abstract Coral calcification is essential to provide the structural foundation for coral reefs and is integral in supporting marine biodiversity reliant on reef ecosystems. The drivers for calcification in corals are undoubtedly highly complex and require several perspectives to identify vulnerabilities in the context of environmental change. Specifically, ocean acidification (OA) resulting from the rise of anthropogenic carbon dioxide (CO2) emissions poses a potential threat to the physiological mechanisms that drive calcification in corals. Therefore, this report goes beyond environmental seawater chemistry to examine the physiological mechanism of calcium ion homeostasis. Calcium's role in calcification physiology is well established, but how calcium homeostasis could shift under acidification has little been considered a significant driver in reduced calcification. Calcium is potentially the most actively transported substrate in coral calcification, though in high chemical abundance in seawater, corals are likely utilizing the most energy to concentrate calcium at the site of calcification. We argue for increased consideration of the calcium ion in the context of OA when identifying sensitivities. The concepts proposed here are justified through a combination of results from novel RAMAN spectroscopy and molecular work that provides insight into shifts in calcium homeostasis when exposed to acidification. We speculate that future work incorporating methodologies considering calcium dynamics in OA could benefit by narrowing in on what physiological mechanisms are potentially vulnerable. It is imperative that we identify what drives lower calcification in corals under OA to inform efficient directives in identifying species sensitivities to future climate change.
more »
« less
Multiple carbonate system parameters independently govern shell formation in a marine mussel
Abstract Calcification is vital to marine organisms that produce calcium carbonate shells and skeletons. However, how calcification is impacted by ongoing environmental changes, including ocean acidification, remains incompletely understood due to complex relationships among the carbonate system variables hypothesized to drive calcification. Here, we experimentally decouple these drivers in an exploration of shell formation in adult marine mussels,Mytilus californianus. In contrast to models that focus on single parameters like calcium carbonate saturation state, our results implicate two independent factors, bicarbonate concentration and seawater pH, in governing calcification. While qualitatively similar to ideas embodied in the related substrate-inhibitor ratio (bicarbonate divided by hydrogen ion concentration), our data highlight that merging bicarbonate ion and hydrogen ion concentrations into a simple quotient obscures important features of calcification. Considering a dual-parameter framework improves mechanistic understanding of how calcifiers interact with complex and changing chemical conditions.
more »
« less
- PAR ID:
- 10508571
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Communications Earth & Environment
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2662-4435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Estuarine total alkalinity (TA), which buffers against acidification, is temporally and spatially variable and regulated by complex, interacting hydrologic and biogeochemical processes. During periods of net evaporation (drought), the Mission-Aransas Estuary (MAE) of the northwestern Gulf of Mexico experienced TA losses beyond what can be attributed to calcification. The contribution of sedimentary oxidation of reduced sulfur to the TA loss was examined in this study. Water column samples were collected from five stations within MAE and analyzed for salinity, TA, and calcium ion concentrations. Sediment samples from four of these monitoring stations and one additional station within MAE were collected and incubated between 2018 and 2021. TA, calcium, magnesium, and sulfate ion concentrations were analyzed for these incubations. Production of sulfate along with TA consumption (or production) beyond what can be attributed to calcification (or carbonate dissolution) was observed. These results suggest that oxidation of reduced sulfur consumed TA in MAE during droughts. We estimate that the upper limit of TA consumption due to reduced sulfur oxidation can be as much as 4.60 × 108 mol day−1in MAE. This biogeochemical TA sink may be present in other similar subtropical, freshwater-starved estuaries around the world.more » « less
-
Abstract Crustaceans comprise an ecologically and morphologically diverse taxonomic group. They are typically considered resilient to many environmental perturbations found in marine and coastal environments, due to effective physiological regulation of ions and hemolymph pH, and a robust exoskeleton. Ocean acidification can affect the ability of marine calcifying organisms to build and maintain mineralized tissue and poses a threat for all marine calcifying taxa. Currently, there is no consensus on how ocean acidification will alter the ecologically relevant exoskeletal properties of crustaceans. Here, we present a systematic review and meta‐analysis on the effects of ocean acidification on the crustacean exoskeleton, assessing both exoskeletal ion content (calcium and magnesium) and functional properties (biomechanical resistance and cuticle thickness). Our results suggest that the effect of ocean acidification on crustacean exoskeletal properties varies based upon seawaterpCO2and species identity, with significant levels of heterogeneity for all analyses. Calcium and magnesium content was significantly lower in animals held atpCO2 levels of 1500–1999 µatm as compared with those under ambientpCO2. At lowerpCO2 levels, however, statistically significant relationships between changes in calcium and magnesium content within the same experiment were observed as follows: a negative relationship between calcium and magnesium content atpCO2of 500–999 µatm and a positive relationship at 1000–1499 µatm. Exoskeleton biomechanics, such as resistance to deformation (microhardness) and shell strength, also significantly decreased underpCO2regimes of 500–999 µatm and 1500–1999 µatm, indicating functional exoskeletal change coincident with decreases in calcification. Overall, these results suggest that the crustacean exoskeleton can be susceptible to ocean acidification at the biomechanical level, potentially predicated by changes in ion content, when exposed to high influxes of CO2. Future studies need to accommodate the high variability of crustacean responses to ocean acidification, and ecologically relevant ranges ofpCO2conditions, when designing experiments with conservation‐level endpoints.more » « less
-
Abstract Amorphous calcium carbonate is an important precursor for biomineralization in marine organisms. Key outstanding problems include understanding the structure of amorphous calcium carbonate and rationalizing its metastability as an amorphous phase. Here we report high-quality atomistic models of amorphous calcium carbonate generated using state-of-the-art interatomic potentials to help guide fits to X-ray total scattering data. Exploiting a recently developed inversion approach, we extract from these models the effective Ca⋯Ca interaction potential governing the structure. This potential contains minima at two competing distances, corresponding to the two different ways that carbonate ions bridge Ca2+-ion pairs. We reveal an unexpected mapping to the Lennard-Jones–Gauss model normally studied in the context of computational soft matter. The empirical model parameters for amorphous calcium carbonate take values known to promote structural complexity. We thus show that both the complex structure and its resilience to crystallization are actually encoded in the geometrically frustrated effective interactions between Ca2+ions.more » « less
-
Coral reefs are highly diverse ecosystems of immense ecological, economic, and aesthetic importance built on the calcium-carbonate-based skeletons of stony corals. The formation of these skeletons is threatened by increasing ocean temperatures and acidification, and a deeper understanding of the molecular mechanisms involved may assist efforts to mitigate the effects of such anthropogenic stressors. In this study, we focused on the role of the predicted bicarbonate transporter SLC4γ, which was suggested in previous studies to be a product of gene duplication and to have a role in coral-skeleton formation. Our comparative-genomics study using 30 coral species and 15 outgroups indicates that SLC4γ is present throughout the stony corals, but not in their non-skeleton-forming relatives, and apparently arose by gene duplication at the onset of stony-coral evolution. Our expression studies show thatSLC4γ, but not the closely related and apparently ancestralSLC4β, is highly upregulated during coral development coincident with the onset of skeleton deposition. Moreover, we show that juvenile coral polyps carrying CRISPR/Cas9-induced mutations inSLC4γare defective in skeleton formation, with the severity of the defect in individual animals correlated with their frequencies ofSLC4γmutations. Taken together, the results suggest that the evolution of the stony corals involved the neofunctionalization of the newly arisen SLC4γ for a unique role in the provision of concentrated bicarbonate for calcium-carbonate deposition. The results also demonstrate the feasibility of reverse-genetic studies of ecologically important traits in adult corals.more » « less
An official website of the United States government
