skip to main content


This content will become publicly available on May 21, 2025

Title: 3D Ultrasound Shear Wave Elastography for Musculoskeletal Tissue Assessment Under Compressive Load: A Feasibility Study

Given its real-time capability to quantify mechanical tissue properties, ultrasound shear wave elastography holds significant promise in clinical musculoskeletal imaging. However, existing shear wave elastography methods fall short in enabling full-limb analysis of 3D anatomical structures under diverse loading conditions, and may introduce measurement bias due to sonographer-applied force on the transducer. These limitations pose numerous challenges, particularly for 3D computational biomechanical tissue modeling in areas like prosthetic socket design. In this feasibility study, a clinical linear ultrasound transducer system with integrated shear wave elastography capabilities was utilized to scan both a calibrated phantom and human limbs in a water tank imaging setup. By conducting 2D and 3D scans under varying compressive loads, this study demonstrates the feasibility of volumetric ultrasound shear wave elastography of human limbs. Our preliminary results showcase a potential method for evaluating 3D spatially varying tissue properties, offering future extensions to computational biomechanical modeling of tissue for various clinical scenarios.

 
more » « less
PAR ID:
10508600
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Ultrasonic Imaging
Volume:
46
Issue:
4-5
ISSN:
0161-7346
Format(s):
Medium: X Size: p. 251-262
Size(s):
p. 251-262
Sponsoring Org:
National Science Foundation
More Like this
  1. Optical coherence elastography measures elasticity—a property correlated with pathologies such as tumors due to fibrosis, atherosclerosis due to heterogeneous plaque composition, and ocular diseases such as keratoconus and glaucoma. Wave-based elastography, including reverberant elastography, leverages the properties of shear waves traveling through tissue primarily to infer shear modulus. These methods have already seen significant development over the past decade. However, existing implementations in OCT require robust synchronization of shear wave excitation with imaging, complicating widespread clinical adoption. We present a method for complete recovery of the harmonic shear wave field in an asynchronous, conventional frame-rate, raster-scanning OCT system by modeling raster-scanning as an amplitude modulation of the displacement field. This technique recovers the entire spatially and temporally coherent complex-valued shear wave field from just two B-scans, while reducing the time scale for sensitivity to motion from minutes to tens of milliseconds. To the best of our knowledge, this work represents the first successful demonstration of reverberant elastography on a human subjectin vivowith a conventional frame-rate, raster-scanning OCT system, greatly expanding opportunity for widespread translation.

     
    more » « less
  2. Abstract

    Objective. With the ultimate goal of reconstructing 3D elasticity maps from ultrasound particle velocity measurements in a plane, we present in this paper a methodology of inverting for 2D elasticity maps from measurements on a single line.Approach. The inversion approach is based on gradient optimization where the elasticity map is iteratively modified until a good match is obtained between simulated and measured responses. Full-wave simulation is used as the underlying forward model to accurately capture the physics of shear wave propagation and scattering in heterogeneous soft tissue. A key aspect of the proposed inversion approach is a cost functional based on correlation between measured and simulated responses.Main results. We illustrate that the correlation-based functional has better convexity and convergence properties compared to the traditional least-squares functional, and is less sensitive to initial guess, robust against noisy measurements and other errors that are common in ultrasound elastography. Inversion with synthetic data illustrates the effectiveness of the method to characterize homogeneous inclusions as well as elasticity map of the entire region of interest.Significance. The proposed ideas lead to a new framework for shear wave elastography that shows promise in obtaining accurate maps of shear modulus using shear wave elastography data obtained from standard clinical scanners.

     
    more » « less
  3. Abstract This paper describes a new method for estimating anisotropic mechanical properties of fibrous soft tissue by imaging shear waves induced by focused ultrasound (FUS) and analyzing their direction-dependent speeds. Fibrous materials with a single, dominant fiber direction may exhibit anisotropy in both shear and tensile moduli, reflecting differences in the response of the material when loads are applied in different directions. The speeds of shear waves in such materials depend on the propagation and polarization directions of the waves relative to the dominant fiber direction. In this study, shear waves were induced in muscle tissue (chicken breast) ex vivo by harmonically oscillating the amplitude of an ultrasound beam focused in a cylindrical tissue sample. The orientation of the fiber direction relative to the excitation direction was varied by rotating the sample. Magnetic resonance elastography (MRE) was used to visualize and measure the full 3D displacement field due to the ultrasound-induced shear waves. The phase gradient (PG) of radially propagating “slow” and “fast” shear waves provided local estimates of their respective wave speeds and directions. The equations for the speeds of these waves in an incompressible, transversely isotropic (TI), linear elastic material were fitted to measurements to estimate the shear and tensile moduli of the material. The combination of focused ultrasound and MR imaging allows noninvasive, but comprehensive, characterization of anisotropic soft tissue. 
    more » « less
  4. Abstract

    Objective: Motivated by the diagnostic value of tissue viscosity beyond elasticity, the goal of this work is to develop robust methodologies based on shear wave elastography (SWE) to reconstruct combined elasticity and viscosity maps of soft tissues out of the measurement plane. Approach: Building on recent advancements in full-waveform inversion (FWI) in reconstructing elasticity maps beyond the measurement plane, we proposed to reconstruct a complete viscoelasticity map by novel combination of three ideas: (a) multiresolution imaging, where lower frequency content is used to reconstruct low resolution map, which is then utilized as a starting point for higher resolution reconstruction by including higher frequency content; (b) acquiring SWE data on multiple planes from multiple pushes, one at a time, and then simultaneously using all the data to invert for a single viscoelasticity map; (c) sequential reconstruction where combined viscoelasticity reconstruction is followed by fixing the elasticity map (and thus kinematics), and repeating the reconstruction but just for the viscosity map. Main results: We examine the proposed methodology using synthetic SWE data to reconstruct the viscoelastic properties of both homogeneous and heterogeneous tumor-like inclusions with shear modulus ranging from 3 to 20 kPa, and viscosity ranging from 1 to 3 Pa.s. Final validation is performed in silico, where the annular inclusion is reconstructed using noisy data with varying signal-to-noise ratios (SNR) of 30, 20 and 10 dB. While elasticity images are reasonably reconstructed even for poor SNR of 10 dB, viscosity imaging seem to require better SNR. Significance: This work, analogous to reconstructing 3D images from 2D measurements, offers a feasibility study for achieving 3D viscoelasticity reconstructions using conventional ultrasound scanners, potentially leading to biomarkers with greater specificity compared to currently available 2D elasticity images.

     
    more » « less
  5. Dynamic elastography, whether based on magnetic resonance, ultrasound, or optical modalities, attempts to reconstruct quantitative maps of the viscoelastic properties of biological tissue, properties that are altered by disease and injury, by noninvasively measuring mechanical wave motion in the tissue. Most reconstruction strategies that have been developed neglect boundary conditions, including quasistatic tensile or compressive loading resulting in a nonzero prestress. Significant prestress is inherent to the functional role of some biological tissues currently being studied using elastography, such as skeletal and cardiac muscle, arterial walls, and the cornea. In the present article, we review how prestress alters both bulk mechanical wave motion and wave motion in one- and two-dimensional waveguides. Key findings are linked to studies on skeletal muscle and the human cornea, as one- and two-dimensional waveguide examples. This study highlights the underappreciated combined acoustoelastic and waveguide challenge to elastography. Can elastography truly determine viscoelastic properties of a material when what it is measuring is affected by both these material properties and unknown prestress and other boundary conditions? 
    more » « less