skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bulk‐Switching Memristor‐Based Compute‐In‐Memory Module for Deep Neural Network Training
Abstract The constant drive to achieve higher performance in deep neural networks (DNNs) has led to the proliferation of very large models. Model training, however, requires intensive computation time and energy. Memristor‐based compute‐in‐memory (CIM) modules can perform vector‐matrix multiplication (VMM) in place and in parallel, and have shown great promises in DNN inference applications. However, CIM‐based model training faces challenges due to non‐linear weight updates, device variations, and low‐precision. In this work, a mixed‐precision training scheme is experimentally implemented to mitigate these effects using a bulk‐switching memristor‐based CIM module. Low‐precision CIM modules are used to accelerate the expensive VMM operations, with high‐precision weight updates accumulated in digital units. Memristor devices are only changed when the accumulated weight update value exceeds a pre‐defined threshold. The proposed scheme is implemented with a system‐onchip of fully integrated analog CIM modules and digital sub‐systems, showing fast convergence of LeNet training to 97.73%. The efficacy of training larger models is evaluated using realistic hardware parameters and verifies that CIM modules can enable efficient mix‐precision DNN training with accuracy comparable to full‐precision software‐trained models. Additionally, models trained on chip are inherently robust to hardware variations, allowing direct mapping to CIM inference chips without additional re‐training.  more » « less
Award ID(s):
1900675
PAR ID:
10508640
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
35
Issue:
46
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a novel deep neural network (DNN) training scheme and resistive RAM (RRAM) in-memory computing (IMC) hardware evaluation towards achieving high accuracy against RRAM device/array variations and enhanced robustness against adversarial input attacks. We present improved IMC inference accuracy results evaluated on state-of-the-art DNNs including ResNet-18, AlexNet, and VGG with binary, 2-bit, and 4-bit activation/weight precision for the CIFAR-10 dataset. These DNNs are evaluated with measured noise data obtained from three different RRAM-based IMC prototype chips. Across these various DNNs and IMC chip measurements, we show that our proposed hardware noise-aware DNN training consistently improves DNN inference accuracy for actual IMC hardware, up to 8% accuracy improvement for the CIFAR-10 dataset. We also analyze the impact of our proposed noise injection scheme on the adversarial robustness of ResNet-18 DNNs with 1-bit, 2-bit, and 4-bit activation/weight precision. Our results show up to 6% improvement in the robustness to black-box adversarial input attacks. 
    more » « less
  2. The high computation and memory storage of large deep neural networks (DNNs) models pose intensive challenges to the conventional Von-Neumann architecture, incurring substantial data movements in the memory hierarchy. The memristor crossbar array has emerged as a promising solution to mitigate the challenges and enable low-power acceleration of DNNs. Memristor-based weight pruning and weight quantization have been separately investigated and proven effectiveness in reducing area and power consumption compared to the original DNN model. However, there has been no systematic investigation of memristor-based neuromorphic computing (NC) systems considering both weight pruning and weight quantization. In this paper, we propose an unified and systematic memristor-based framework considering both structured weight pruning and weight quantization by incorporating alternating direction method of multipliers (ADMM) into DNNs training. We consider hardware constraints such as crossbar blocks pruning, conductance range, and mismatch between weight value and real devices, to achieve high accuracy and low power and small area footprint. Our framework is mainly integrated by three steps, i.e., memristor- based ADMM regularized optimization, masked mapping and retraining. Experimental results show that our proposed frame- work achieves 29.81× (20.88×) weight compression ratio, with 98.38% (96.96%) and 98.29% (97.47%) power and area reduction on VGG-16 (ResNet-18) network where only have 0.5% (0.76%) accuracy loss, compared to the original DNN models. We share our models at anonymous link http://bit.ly/2Jp5LHJ . 
    more » « less
  3. The memristor crossbar array has emerged as an intrinsically suitable matrix computation and low-power acceleration framework for DNN applications. Many techniques such as memristor-based weight pruning and memristor-based quantization have been studied. However, the high accuracy solution for the above techniques is still waiting for unraveling. In this paper, we propose a memristor-based DNN framework which combines both structured weight pruning and quantization by incorporating ADMM algorithm for better pruning and quantization performance. We also discover the non-optimality of the ADMM solution in weight pruning and the unused data path in a structured pruned model. We design a software-hardware co-optimization framework which contains the first proposed Network Purification and Unused Path Removal algorithms targeting on post-processing a structured pruned model after ADMM steps. By taking memristor hardware constraints into our whole framework, we achieve extreme high compression rate with minimum accuracy loss. For quantizing structured pruned model, our framework achieves nearly no accuracy loss after quantizing weights to 8-bit memristor weight representation. We share our models at anonymous link https://bit.ly/2VnMUy0. 
    more » « less
  4. On-chip learning with compute-in-memory (CIM) paradigm has become popular in machine learning hardware design in the recent years. However, it is hard to achieve high on-chip learning accuracy due to the high nonlinearity in the weight update curve of emerging nonvolatile memory (eNVM) based analog synapse devices. Although digital synapse devices offer good learning accuracy, the row-by-row partial sum accumulation leads to high latency. In this paper, the methods to solve the aforementioned issues are presented with a device-to-algorithm level optimization. For analog synapses, novel hybrid precision synapses with good linearity and more advanced training algorithms are introduced to increase the on-chip learning accuracy. The latency issue for digital synapses can be solved by using parallel partial sum read-out scheme. All these features are included into the recently released MLP + NeuroSimV3.0, which is an in-house developed device-to-system evaluation framework for neuro-inspired accelerators based on CIM paradigm. 
    more » « less
  5. This paper presents an extensive study of linear and logistic regression algorithms implemented with 1T1R memristor crossbars arrays. Using a sophisticated simulation platform that wraps circuit-level simulations of 1T1R crossbars and physics-based models of RRAM (memristors), we elucidate the impact of device variability on algorithm accuracy, convergence rate and precision. Moreover, a smart pulsing strategy is proposed for practical implementation of synaptic weight updates that can accelerate training in real crossbar architectures. Stochastic multi-variable linear regression shows robustness to memristor variability in terms of prediction accuracy but reveals impact on convergence rate and precision. Similarly, the stochastic logistic regression crossbar implementation reveals immunity to memristor variability as determined by negligible effects on image classification accuracy but indicates an impact on training performance manifested as reduced convergence rate and degraded precision. 
    more » « less