We report the discovery of 40 new satellite dwarf galaxy candidates in the sphere of influence of the Sombrero Galaxy (M104), the most luminous galaxy in the Local Volume. Using the Subaru Hyper Suprime-Cam, we surveyed 14.4 deg2 of its surroundings, extending to the virial radius. Visual inspection of the deep images and GALFIT modelling yielded a galaxy sample highly complete down to Mg ~ -9 ( Lg∼3×105 L⊙ ) and spanning magnitudes -16.4 < Mg < -8 and half-light radii 50 pc < re < 1600 pc assuming the distance of M104. These 40 new candidates, out of which 27 are group members with high confidence, double the number of potential satellites of M104 within the virial radius, placing it among the richest hosts in the Local Volume. Using a principal component analysis, we find that the entire sample of candidates is consistent with an almost circular on-sky distribution, more circular than any comparable environment found in the Illustris TNG100-1 (The Next Generation) simulation. However, the distribution of the high-probability sample is more oblate and consistent with the simulation. The cumulative satellite luminosity function is broadly consistent with analogues from the simulation, albeit it contains no bright satellite with Mg < -16.4 ( Lg∼3×108 L⊙ ), a 2.3σ occurrence. Follow-up spectroscopy to confirm group membership will begin to demonstrate how these systems can act as probes of the structure and formation history of the halo of M104.
more »
« less
New dwarf galaxy candidates in the sphere of influence of the Sombrero galaxy
ABSTRACT We report the discovery of 40 new satellite dwarf galaxy candidates in the sphere of influence of the Sombrero Galaxy (M104), the most luminous galaxy in the Local Volume. Using the Subaru Hyper Suprime-Cam, we surveyed 14.4 deg2 of its surroundings, extending to the virial radius. Visual inspection of the deep images and galfit modelling yielded a galaxy sample highly complete down to Mg ∼ −9 ($$L_{g}\sim 3\times 10^{5}\ \mathrm{ L}_\odot$$) and spanning magnitudes −16.4 < Mg < −8 and half-light radii 50 pc < re < 1600 pc assuming the distance of M104. These 40 new candidates, out of which 27 are group members with high confidence, double the number of potential satellites of M104 within the virial radius, placing it among the richest hosts in the Local Volume. Using a principal component analysis, we find that the entire sample of candidates is consistent with an almost circular on-sky distribution, more circular than any comparable environment found in the Illustris TNG100-1 (The Next Generation) simulation. However, the distribution of the high-probability sample is more oblate and consistent with the simulation. The cumulative satellite luminosity function is broadly consistent with analogues from the simulation, albeit it contains no bright satellite with Mg < −16.4 ($$L_{g}\sim 3 \times 10^{8}\ \mathrm{ L}_\odot$$), a $$2.3\, \sigma$$ occurrence. Follow-up spectroscopy to confirm group membership will begin to demonstrate how these systems can act as probes of the structure and formation history of the halo of M104.
more »
« less
- Award ID(s):
- 1815403
- PAR ID:
- 10508667
- Publisher / Repository:
- Monthly Notices of the Royal Astronomical Society
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 527
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 9118 to 9131
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT We present and study a large suite of high-resolution cosmological zoom-in simulations, using the FIRE-2 treatment of mechanical and radiative feedback from massive stars, together with explicit treatment of magnetic fields, anisotropic conduction and viscosity (accounting for saturation and limitation by plasma instabilities at high β), and cosmic rays (CRs) injected in supernovae shocks (including anisotropic diffusion, streaming, adiabatic, hadronic and Coulomb losses). We survey systems from ultrafaint dwarf ($$M_{\ast }\sim 10^{4}\, \mathrm{M}_{\odot }$$, $$M_{\rm halo}\sim 10^{9}\, \mathrm{M}_{\odot }$$) through Milky Way/Local Group (MW/LG) masses, systematically vary uncertain CR parameters (e.g. the diffusion coefficient κ and streaming velocity), and study a broad ensemble of galaxy properties [masses, star formation (SF) histories, mass profiles, phase structure, morphologies, etc.]. We confirm previous conclusions that magnetic fields, conduction, and viscosity on resolved ($$\gtrsim 1\,$$ pc) scales have only small effects on bulk galaxy properties. CRs have relatively weak effects on all galaxy properties studied in dwarfs ($$M_{\ast } \ll 10^{10}\, \mathrm{M}_{\odot }$$, $$M_{\rm halo} \lesssim 10^{11}\, \mathrm{M}_{\odot }$$), or at high redshifts (z ≳ 1–2), for any physically reasonable parameters. However, at higher masses ($$M_{\rm halo} \gtrsim 10^{11}\, \mathrm{M}_{\odot }$$) and z ≲ 1–2, CRs can suppress SF and stellar masses by factors ∼2–4, given reasonable injection efficiencies and relatively high effective diffusion coefficients $$\kappa \gtrsim 3\times 10^{29}\, {\rm cm^{2}\, s^{-1}}$$. At lower κ, CRs take too long to escape dense star-forming gas and lose their energy to collisional hadronic losses, producing negligible effects on galaxies and violating empirical constraints from spallation and γ-ray emission. At much higher κ CRs escape too efficiently to have appreciable effects even in the CGM. But around $$\kappa \sim 3\times 10^{29}\, {\rm cm^{2}\, s^{-1}}$$, CRs escape the galaxy and build up a CR-pressure-dominated halo which maintains approximate virial equilibrium and supports relatively dense, cool (T ≪ 106 K) gas that would otherwise rain on to the galaxy. CR ‘heating’ (from collisional and streaming losses) is never dominant.more » « less
-
ABSTRACT We introduce a suite of cosmological volume simulations to study the evolution of galaxies as part of the Feedback in Realistic Environments project. FIREbox, the principal simulation of the present suite, provides a representative sample of galaxies (∼1000 galaxies with $$M_{\rm star}\gt 10^8\, M_\odot$$ at z = 0) at a resolution ($$\Delta {}x\sim {}20\, {\rm pc}$$ , $$m_{\rm b}\sim {}6\times {}10^4\, M_\odot$$ ) comparable to state-of-the-art galaxy zoom-in simulations. FIREbox captures the multiphase nature of the interstellar medium in a fully cosmological setting (L = 22.1 Mpc) thanks to its exceptionally high dynamic range (≳106) and the inclusion of multichannel stellar feedback. Here, we focus on validating the simulation predictions by comparing to observational data. We find that star formation rates, gas masses, and metallicities of simulated galaxies with $$M_{\rm star}\lt 10^{10.5-11}\, M_\odot$$ broadly agree with observations. These galaxy scaling relations extend to low masses ($$M_{\rm star}\sim {}10^7\, M_\odot$$ ) and follow a (broken) power-law relationship. Also reproduced are the evolution of the cosmic HI density and the HI column density distribution at z ∼ 0–5. At low z , FIREbox predicts a peak in the stellar-mass–halo-mass relation but also a higher abundance of massive galaxies and a higher cosmic star formation rate density than observed, showing that stellar feedback alone is insufficient to reproduce the properties of massive galaxies at late times. Given its high resolution and sample size, FIREbox offers a baseline prediction of galaxy formation theory in a ΛCDM Universe while also highlighting modelling challenges to be addressed in next-generation galaxy simulations.more » « less
-
ABSTRACT We analyse the cold dark matter density profiles of 54 galaxy haloes simulated with Feedback In Realistic Environments (FIRE)-2 galaxy formation physics, each resolved within $$0.5{{\ \rm per\ cent}}$$ of the halo virial radius. These haloes contain galaxies with masses that range from ultrafaint dwarfs ($$M_\star \simeq 10^{4.5}\, \mathrm{M}_{\odot }$$) to the largest spirals ($$M_\star \simeq 10^{11}\, \mathrm{M}_{\odot }$$) and have density profiles that are both cored and cuspy. We characterize our results using a new, analytic density profile that extends the standard two-parameter Einasto form to allow for a pronounced constant density core in the resolved innermost radius. With one additional core-radius parameter, rc, this three-parameter core-Einasto profile is able to characterize our feedback-impacted dark matter haloes more accurately than other three-parameter profiles proposed in the literature. To enable comparisons with observations, we provide fitting functions for rc and other profile parameters as a function of both M⋆ and M⋆/Mhalo. In agreement with past studies, we find that dark matter core formation is most efficient at the characteristic stellar-to-halo mass ratio M⋆/Mhalo ≃ 5 × 10−3, or $$M_{\star } \sim 10^9 \, \mathrm{M}_{\odot }$$, with cores that are roughly the size of the galaxy half-light radius, rc ≃ 1−5 kpc. Furthermore, we find no evidence for core formation at radii $$\gtrsim 100\ \rm pc$$ in galaxies with M⋆/Mhalo < 5 × 10−4 or $$M_\star \lesssim 10^6 \, \mathrm{M}_{\odot }$$. For Milky Way-size galaxies, baryonic contraction often makes haloes significantly more concentrated and dense at the stellar half-light radius than DMO runs. However, even at the Milky Way scale, FIRE-2 galaxy formation still produces small dark matter cores of ≃ 0.5−2 kpc in size. Recent evidence for a ∼2 kpc core in the Milky Way’s dark matter halo is consistent with this expectation.more » « less
-
Abstract We report the discovery of a bright ( $g = 14.5$ mag (AB), $K = 11.9$ mag (Vega)) quasar at redshift $z=0.83$ — the optically brightest (unbeamed) quasar at $z>0.4$ . SMSS J114447.77-430859.3, at a Galactic latitude of $$b=+18.1^{\circ}$$ , was identified by its optical colours from the SkyMapper Southern Survey (SMSS) during a search for symbiotic binary stars. Optical and near-infrared spectroscopy reveals broad Mg ii , H $$\unicode{x03B2}$$ , H $$\unicode{x03B1}$$ , and Pa $$\unicode{x03B2}$$ emission lines, from which we measure a black hole mass of $$\log_{10}\! (M_{\mathrm{BH}}/\mathrm{M}_{\odot}) = 9.4 \pm 0.5$$ . With its high luminosity, $$L_{\mathrm{bol}} = (4.7\pm1.0)\times10^{47}\,\mathrm{erg\,s}^{-1}$$ or $$M_{i}(z=2) = -29.74$$ mag (AB), we estimate an Eddington ratio of $$\approx1.4$$ . As the most luminous quasar known over the last $${\sim}$$ 9 Gyr of cosmic history, having a luminosity $$8\times$$ greater than 3C 273, the source offers a range of potential follow-up opportunities.more » « less
An official website of the United States government

