skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Isotopic characterization of reactive nitrogen in summertime Detroit Metropolitan Area during MOOSE campaign
Surface ozone (O3) levels in Southeast Michigan (SEMI) exceeds U.S. National Ambient Air Quality Standards (NAAQS), posing risks to human health and agroecosystems. SEMI, a relatively small region in the state of Michigan, contains a majority of anthropogenic emission sources and more than half of the state’s population, and is also prone to long-range and transboundary pollutant transport. Understanding the physical and chemical drivers of elevated O3 through detailed and innovative modeling studies are crucial to address the issue. In this study, we explore the distribution of O3 and its precursors (e.g., NOx & VOCs) over SEMI for the summer of 2021 using the 3-D chemistry-climate model, MUSICAv0 (Multi-Scale Infrastructure for Chemistry and Aerosols, Version 0). Model simulations are evaluated with Michigan-Ontario Ozone Source Experiment (MOOSE) field campaign measurements. A finer horizontal resolution of ~7 km x 7km in MUSICAv0 was developed over Michigan to better understand the local-scale impacts of chemical and dynamic complexity existing in SEMI. MUSICAv0 with the refined model grid shows excellent skill in capturing diurnal variations of temperature and O3, but shows larger variations for nitrogen dioxide (NO2). The MUSICAv0 results for NOx and its oxidation products (e.g., HNO3) were improved by applying a diurnal cycle to anthropogenic nitric oxide (NO) emissions, as global models generally do not include diurnal variation of emissions. The source attribution of O3 in SEMI is also quantified using a carbon monoxide (CO) tagging method. Optimization of a regionally-refined, coupled model such as MUSICAv0, through resolution and emission modeling studies, have significant implications for air quality projects at the local-scale and the design of effective surface O3 mitigation strategies.  more » « less
Award ID(s):
2126097
PAR ID:
10508788
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Format(s):
Medium: X
Location:
San Francisco, CA
Sponsoring Org:
National Science Foundation
More Like this
  1. The summertime surface ozone (O3) concentrations over Southeast Michigan (SEMI) often exceed 70 ppbv. However, the associated O3 formation regime is still not well known. In this study, we examined the chemical drivers of O3 exceedances in SEMI, based on the Michigan-Ontario Ozone Source Experiment (MOOSE) field campaign during the period of May 20 – June 30, 2021. We employed a zero-dimensional (0-D) box model, which was constrained by measurements of meteorology and trace gas concentrations during MOOSE. Our model simulations demonstrated that the formaldehyde to nitrogen dioxide ratio (HCHO/NO2) for the transition between the VOC- and NOx-limited O3 production regimes was 3.0 ± 0.3 (mean ± 1σ) in SEMI. The midday (12:00-16:00) averaged HCHO/NO2 ratio during MOOSE was 1.62 ± 1.03, suggesting that O3 production in SEMI was likely limited by VOC emissions. Our study has significant implications for air quality policy and the design of effective O3 pollution control strategies through ground-based HCHO/NO2 measurements and model simulations. 
    more » « less
  2. The Michigan–Ontario Ozone Source Experiment (MOOSE) is an international air quality field study that took place at the US–Canada Border region in the ozone seasons of 2021 and 2022. MOOSE addressed binational air quality issues stemming from lake breeze phenomena and transboundary transport, as well as local emissions in southeast Michigan and southern Ontario. State-of-the-art scientific techniques applied during MOOSE included the use of multiple advanced mobile laboratories equipped with real-time instrumentation; high-resolution meteorological and air quality models at regional, urban, and neighborhood scales; daily real-time meteorological and air quality forecasts; ground-based and airborne remote sensing; instrumented Unmanned Aerial Vehicles (UAVs); isotopic measurements of reactive nitrogen species; chemical fingerprinting; and fine-scale inverse modeling of emission sources. Major results include characterization of southeast Michigan as VOC-limited for local ozone formation; discovery of significant and unaccounted formaldehyde emissions from industrial sources; quantification of methane emissions from landfills and leaking natural gas pipelines; evaluation of solvent emission impacts on local and regional ozone; characterization of the sources of reactive nitrogen and PM2.5; and improvements to modeling practices for meteorological, receptor, and chemical transport models. 
    more » « less
  3. We report on the sensitivity of enhanced ozone (O3) production, observed during lake breeze circulation along the coastline of Lake Michigan, to the concentrations of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs). We assess the sensitivity of O3 production to NOx and VOC on a high O3 day during the Lake Michigan Ozone Study 2017 (LMOS 2017) using an observationally-constrained chemical box model that implements the Master Chemical Mechanism (MCM v3.3.1) and recent emission inventories for NOx and VOCs. The MCM model is coupled to a backward air mass trajectory analysis from a ground supersite in Zion, IL where an extensive series of measurements of O3 precursors and their oxidation products, including hydrogen peroxide (H2O2), nitric acid (HNO3), and particulate nitrates (NO3-) serve as model constraints. We evaluate the chemical evolution of the Chicago-Gary urban plume as it advects over Lake Michigan and demonstrate how modeled indicators of VOC- vs. NOx- sensitive regimes can be constrained by measurements at the trajectory endpoint. Using the modeled ratio of the instantaneous H2O2 and HNO3 production rates (PH2O2 / PHNO3), we suggest that O3 production over the urban source region is strongly VOC-sensitive and progresses towards a more NOx-sensitive regime as the plume advects north along the Lake Michigan coastline on this day. We also demonstrate that ground-based measurements of the mean concentration ratio of H2O2 to HNO3 describe the sensitivity of O3 production to VOC and NOx as the integral of chemical production along the plume path. 
    more » « less
  4. Abstract. This study describes a modeling framework, model evaluation, and source apportionment to understand the causes of Los Angeles (LA) air pollution. A few major updates are applied to the Community Multiscale Air Quality (CMAQ) model with a high spatial resolution (1 km × 1 km). The updates include dynamic traffic emissions based on real-time, on-road information and recent emission factors and secondary organic aerosol (SOA) schemes to represent volatile chemical products (VCPs). Meteorology is well predicted compared to ground-based observations, and the emission rates from multiple sources (i.e., on-road, volatile chemical products, area, point, biogenic, and sea spray) are quantified. Evaluation of the CMAQ model shows that ozone is well predicted despite inaccuracies in nitrogen oxide (NOx) predictions. Particle matter (PM) is underpredicted compared to concurrent measurements made with an aerosol mass spectrometer (AMS) in Pasadena. Inorganic aerosol is well predicted, while SOA is underpredicted. Modeled SOA consists of mostly organic nitrates and products from oxidation of alkane-like intermediate volatility organic compounds (IVOCs) and has missing components that behave like less-oxidized oxygenated organic aerosol (LO-OOA). Source apportionment demonstrates that the urban areas of the LA Basin and vicinity are NOx-saturated (VOC-sensitive), with the largest sensitivity of O3 to changes in VOCs in the urban core. Differing oxidative capacities in different regions impact the nonlinear chemistry leading to PM and SOA formation, which is quantified in this study. 
    more » « less
  5. Abstract. We investigated the ozone pollution trend and its sensitivity to keyprecursors from 1990 to 2015 in the United States using long-term EPA Air Quality System (AQS)observations and mesoscale simulations. The modeling system, a coupledregional climate–air quality model (CWRF-CMAQ; Climate-Weather Research Forecast andthe Community Multiscale Air Quality), captured well the summersurface ozone pollution during the past decades, having a mean slope oflinear regression with AQS observations of ∼0.75. While theAQS network has limited spatial coverage and measures only a few keychemical species, CWRF-CMAQ provides comprehensive simulations to enablea more rigorous study of the change in ozone pollution and chemicalsensitivity. Analysis of seasonal variations and diurnal cycle of ozoneobservations showed that peak ozone concentrations in the summer afternoondecreased ubiquitously across the United States, up to 0.5 ppbv yr−1 in majornon-attainment areas such as Los Angeles, while concentrations at certainhours such as the early morning and late afternoon increased slightly.Consistent with the AQS observations, CMAQ simulated a similar decreasingtrend of peak ozone concentrations in the afternoon, up to 0.4 ppbv yr−1, andincreasing ozone trends in the early morning and late afternoon. A monotonicallydecreasing trend (up to 0.5 ppbv yr−1) in the odd oxygen (Ox=O3+NO2) concentrations are simulated by CMAQ at all daytime hours.This result suggests that the increased ozone in the early morning and lateafternoon was likely caused by reduced NO–O3 titration, driven bycontinuous anthropogenic NOx emission reductions in the past decades.Furthermore, the CMAQ simulations revealed a shift in chemical regimes ofozone photochemical production. From 1990 to 2015, surface ozone productionin some metropolitan areas, such as Baltimore, has transited from aVOC-sensitive environment (>50 % probability) to aNOx-sensitive regime. Our results demonstrated that the long-termCWRF-CMAQ simulations can provide detailed information of the ozonechemistry evolution under a changing climate and may partially explain theUS ozone pollution responses to regional and national regulations. 
    more » « less