skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Picard sheaves, local Brauer groups, and topological modular forms
Abstract We develop tools to analyze and compare the Brauer groups of spectra such as periodic complex and real ‐theory and topological modular forms, as well as the derived moduli stack of elliptic curves. In particular, we prove that the Brauer group of is isomorphic to the Brauer group of the derived moduli stack of elliptic curves. Our main computational focus is on the subgroup of the Brauer group consisting of elements trivialized by some étale extension, which we call the local Brauer group. Essential information about this group can be accessed by a thorough understanding of the Picard sheaf and its cohomology. We deduce enough information about the Picard sheaf of and the (derived) moduli stack of elliptic curves to determine the structure of their local Brauer groups away from the prime 2. At 2, we show that they are both infinitely generated and agree up to a potential error term that is a finite 2‐torsion group.  more » « less
Award ID(s):
2102010
PAR ID:
10508811
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Oxford University Press (OUP)
Date Published:
Journal Name:
Journal of Topology
Volume:
17
Issue:
2
ISSN:
1753-8416
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Kazhdan and Lusztig identified the affine Hecke algebra ℋ with an equivariant$$K$$ K -group of the Steinberg variety, and applied this to prove the Deligne-Langlands conjecture, i.e., the local Langlands parametrization of irreducible representations of reductive groups over nonarchimedean local fields$$F$$ F with an Iwahori-fixed vector. We apply techniques from derived algebraic geometry to pass from$$K$$ K -theory to Hochschild homology and thereby identify ℋ with the endomorphisms of a coherent sheaf on the stack of unipotent Langlands parameters, thecoherent Springer sheaf. As a result the derived category of ℋ-modules is realized as a full subcategory of coherent sheaves on this stack, confirming expectations from strong forms of the local Langlands correspondence (including recent conjectures of Fargues-Scholze, Hellmann and Zhu). In the case of the general linear group our result allows us to lift the local Langlands classification of irreducible representations to a categorical statement: we construct a full embedding of the derived category of smooth representations of$$\mathrm{GL}_{n}(F)$$ GL n ( F ) into coherent sheaves on the stack of Langlands parameters. 
    more » « less
  2. Abstract In this article we review how categorical equivalences are realized by renormalization group flow in physical realizations of stacks, derived categories, and derived schemes. We begin by reviewing the physical realization of sigma models on stacks, as (universality classes of) gauged sigma models, and look in particular at properties of sigma models on gerbes (equivalently, sigma models with restrictions on nonperturbative sectors), and ‘decomposition,’ in which two‐dimensional sigma models on gerbes decompose into disjoint unions of ordinary theories. We also discuss stack structures on examples of moduli spaces of SCFTs, focusing on elliptic curves, and implications of subtleties there for string dualities in other dimensions. In the second part of this article, we review the physical realization of derived categories in terms of renormalization group flow (time evolution) of combinations of D‐branes, antibranes, and tachyons. In the third part of this article, we review how Landau–Ginzburg models provide a physical realization of derived schemes, and also outline an example of a derived structure on a moduli spaces of SCFTs. 
    more » « less
  3. We give a detailed proof that locally Noetherian moduli stacks of sections carry canonical obstruction theories. As part of the argument, we construct a dualising sheaf and trace map, in the lisse-étale topology, for families of tame twisted curves when the base stack is locally Noetherian. 
    more » « less
  4. Abstract The Brill–Noether theory of curves plays a fundamental role in the theory of curves and their moduli and has been intensively studied since the 19th century. In contrast, Brill–Noether theory for higher dimensional varieties is less understood. It is hard to determine when Brill–Noether loci are nonempty and these loci can be reducible and of larger than the expected dimension. Let $$E$$ be a semistable sheaf on $${\mathbb{P}}^{2}$$. In this paper, we give an upper bound $$\beta _{r, \mu }$$ for $$h^{0}(E)$$ in terms of the rank $$r$$ and the slope $$\mu $$ of $$E$$. We show that the bound is achieved precisely when $$E$$ is a twist of a Steiner bundle. We classify the sheaves $$E$$ such that $$h^{0}(E)$$ is within $$\lfloor \mu (E) \rfloor + 1$$ of $$\beta _{r, \mu }$$. We determine the nonemptiness, irreducibility and dimension of the Brill–Noether loci in the moduli spaces of sheaves on $${\mathbb{P}}^{2}$$ with $$h^{0}(E)$$ in this range. When they are proper subvarieties, these Brill–Noether loci are irreducible though almost always of larger than the expected dimension. 
    more » « less
  5. Abstract Given a K3 surface X over a number field K with potentially good reduction everywhere, we prove that the set of primes of K where the geometric Picard rank jumps is infinite. As a corollary, we prove that either $$X_{\overline {K}}$$ has infinitely many rational curves or X has infinitely many unirational specialisations. Our result on Picard ranks is a special case of more general results on exceptional classes for K3 type motives associated to GSpin Shimura varieties. These general results have several other applications. For instance, we prove that an abelian surface over a number field K with potentially good reduction everywhere is isogenous to a product of elliptic curves modulo infinitely many primes of K . 
    more » « less