skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Towards Immobilized Proton-Coupled Electron Transfer Agents for Electrochemical Carbon Capture from Air and Seawater

Electrochemical CO2separation has drawn attention as a promising strategy for using renewable energy to mitigate climate change. Redox-active compounds that undergo proton-coupled electron transfer (PCET) are an impetus for pH-swing-driven CO2capture at low energetic costs. However, multiple barriers hinder this technology from maturing, including sensitivity to oxygen and the slow kinetics of CO2capture. Here, we use vapor phase chemistry to construct a textile electrode comprising an immobilized PCET agent, poly(1-aminoanthraquinone) (PAAQ), and incorporate it into redox flow cells. This design contrasts with others that use dissolved PCET agents by confining proton-storage to the surface of an electrode kept separate from an aqueous, CO2-capturing phase. This system facilitates carbon capture from gaseous sources (a 1% CO2feed and air), as well as seawater, with the latter at an energetic cost of 202 kJ/molCO2, and we find that quinone moieties embedded within the electrode are more stable to oxygen than dissolved counterparts. Simulations using a 1D reaction-transport model show that moderate energetic costs should be possible for air capture of CO2with higher loadings of polymer-bound PCET moieties. The remarkable stability of this system sets the stage for producing textile-based electrodes that facilitate pH-swing-driven carbon capture in practical situations.

 
more » « less
Award ID(s):
2045032
NSF-PAR ID:
10508814
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
The Electrochemical Society
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
171
Issue:
5
ISSN:
0013-4651
Format(s):
Medium: X Size: Article No. 053505
Size(s):
Article No. 053505
Sponsoring Org:
National Science Foundation
More Like this
  1. We perform a thermodynamic analysis of the energetic cost of CO 2 separation from flue gas (0.1 bar CO 2 (g)) and air (400 ppm CO 2 ) using a pH swing created by electrochemical redox reactions involving proton-coupled electron transfer from molecular species in aqueous electrolyte. In this scheme, electrochemical reduction of these molecules results in the formation of alkaline solution, into which CO 2 is absorbed; subsequent electrochemical oxidation of the reduced molecules results in the acidification of the solution, triggering the release of pure CO 2 gas. We examined the effect of buffering from the CO 2 –carbonate system on the solution pH during the cycle, and thereby on the open-circuit potential of an electrochemical cell in an idealized four-process CO 2 capture-release cycle. The minimum work input varies from 16 to 75 kJ mol CO2 −1 as throughput increases, for both flue gas and direct air capture, with the potential to go substantially lower if CO 2 capture or release is performed simultaneously with electrochemical reduction or oxidation. We discuss the properties required of molecules that would be suitable for such a cycle. We also demonstrate multiple experimental cycles of an electrochemical CO 2 capture and release system using 0.078 M sodium 3,3′-(phenazine-2,3-diylbis(oxy))bis(propane-1-sulfonate) as the proton carrier in an aqueous flow cell. CO 2 capture and release are both performed at 0.465 bar at a variety of current densities. When extrapolated to infinitesimal current density we obtain an experimental cycle work of 47.0 kJ mol CO2 −1 . This result suggests that, in the presence of a 0.465 bar/1.0 bar inlet/outlet pressure ratio, a 1.9 kJ mol CO2 −1 thermodynamic penalty should add to the measured value, yielding an energy cost of 48.9 kJ mol CO2 −1 in the low-current-density limit. This result is within a factor of two of the ideal cycle work of 34 kJ mol CO2 −1 for capturing at 0.465 bar and releasing at 1.0 bar. The ideal cycle work and experimental cycle work values are compared with those for other electrochemical and thermal CO 2 separation methods. 
    more » « less
  2. Abstract

    Chemical looping air separation (CLAS) is a promising technology for oxygen generation with high efficiency. The key challenge for CLAS is to design robust oxygen sorbents with suitable redox properties and fast redox kinetics. In this work, perovskite-structured Sr1-xCaxFe1-yCoyO3oxygen sorbents were investigated and demonstrated for oxygen production with tunable redox properties, high redox rate, and excellent thermal/steam stability. Cobalt doping at B site was found to be highly effective, 33% improvement in oxygen productivity was observed at 500 °C. Moreover, it stabilizes the perovskite structure and prevents phase segregation under pressure swing conditions in the presence of steam. Scalable synthesis of Sr0.8Ca0.2Fe0.4Co0.6O3oxygen sorbents was carried out through solid state reaction, co-precipitation, and sol-gel methods. Both co-precipitation and sol-gel methods are capable of producing Sr0.8Ca0.2Fe0.4Co0.6O3sorbents with satisfactory phase purity, high oxygen capacity, and fast redox kinetics. Large scale evaluation of Sr0.8Ca0.2Fe0.4Co0.6O3, using an automated CLAS testbed with over 300 g sorbent loading, further demonstrated the effectiveness of the oxygen sorbent to produce 95% pure O2with a satisfactory productivity of 0.04 gO2gsorbent−1h−1at 600 °C.

     
    more » « less
  3. Abstract

    Increasing catalytic activity and durability of atomically dispersed metal–nitrogen–carbon (M–N–C) catalysts for the oxygen reduction reaction (ORR) cathode in proton‐exchange‐membrane fuel cells remains a grand challenge. Here, a high‐power and durable Co–N–C nanofiber catalyst synthesized through electrospinning cobalt‐doped zeolitic imidazolate frameworks into selected polyacrylonitrile and poly(vinylpyrrolidone) polymers is reported. The distinct porous fibrous morphology and hierarchical structures play a vital role in boosting electrode performance by exposing more accessible active sites, providing facile electron conductivity, and facilitating the mass transport of reactant. The enhanced intrinsic activity is attributed to the extra graphitic N dopants surrounding the CoN4moieties. The highly graphitized carbon matrix in the catalyst is beneficial for enhancing the carbon corrosion resistance, thereby promoting catalyst stability. The unique nanoscale X‐ray computed tomography verifies the well‐distributed ionomer coverage throughout the fibrous carbon network in the catalyst. The membrane electrode assembly achieves a power density of 0.40 W cm−2in a practical H2/air cell (1.0 bar) and demonstrates significantly enhanced durability under accelerated stability tests. The combination of the intrinsic activity and stability of single Co sites, along with unique catalyst architecture, provide new insight into designing efficient PGM‐free electrodes with improved performance and durability.

     
    more » « less
  4. Abstract

    Air‐sea exchange of carbon dioxide (CO2) in the Southern Ocean plays an important role in the global carbon budget. Previous studies have suggested that flow around topographic features of the Southern Ocean enhances the upward supply of carbon from the deep to the surface, influencing air‐sea CO2exchange. Here, we investigate the role of seafloor topography on the transport of carbon and associated air‐sea CO2flux in an idealized channel model. We find elevated CO2outgassing upstream of a seafloor ridge, driven by anomalous advection of dissolved inorganic carbon. Argo‐like Lagrangian particles in our channel model sample heterogeneously in the vicinity of the seafloor ridge, which could impact float‐based estimates of CO2flux.

     
    more » « less
  5. Abstract

    Pore size distribution and surface chemistry of bio‐derived (milk) microporous dominated carbon “MDC” is synergistically tuned, allowing for promising carbon capture in a dry CO2atmosphere and in mixed H2O–CO2. The capture capacity is attributed to the synergy of a large total surface area with an ultramicroporous and microporous texture (e.g.,Stot1889 m2g−1,Smic1755 m2g−1,Sultra1393 m2g−1), and a high content of nitrogen and oxygen heteroatom moieties (e.g., 5 at% N, 10.5 at% O). Tailored two‐step low‐temperature pyrolysis‐chemical activation is employed to take advantage of the intrinsic properties of the precursor, allowing for this unusual textural properties‐heteroatoms combination. For example, tested at 1 bar and 295 or 273 K, MDCs adsorb up to 22.0 and 29.4 wt% CO2, respectively. MDCs are also tailored to be hydrophobic, with CO2/H2O adsorption selectivity even after prolonged cycling. Maximum working capacities of 10.8 wt% for pure CO2and 3.5 wt% for a flue gas simulant (15% CO2, 85% N2) are measured using temperature swing adsorption with dynamic purge gases, while being minimally affected by humid conditions. This work is directly aligned with the United Nation’s Sustainable Development Goal 13, take urgent action to combat climate change and its impacts.

     
    more » « less