skip to main content


Title: Abundances of Neutron-capture Elements in 62 Stars in the Globular Cluster Messier 15
Abstract

M15 is a globular cluster with a known spread in neutron-capture elements. This paper presents abundances of neutron-capture elements for 62 stars in M15. Spectra were obtained with the Michigan/Magellan Fiber System spectrograph, covering a wavelength range from ∼4430 to 4630 Å. Spectral lines from Fei, Feii, Sri, Zrii, Baii, Laii, Ceii, Ndii, Smii, Euii, and Dyii were measured, enabling classifications and neutron-capture abundance patterns for the stars. Of the 62 targets, 44 are found to be highly Eu-enhancedr-II stars, another 17 are moderately Eu-enhancedr-I stars, and one star is found to have ans-process signature. The neutron-capture patterns indicate that the majority of the stars are consistent with enrichment by ther-process. The 62 target stars are found to show significant star-to-star spreads in Sr, Zr, Ba, La, Ce, Nd, Sm, Eu, and Dy, but no significant spread in Fe. The neutron-capture abundances are further found to have slight correlations with sodium abundances from the literature, unlike what has been previously found; follow-up studies are needed to verify this result. The findings in this paper suggest that the Eu-enhanced stars in M15 were enhanced by the same process, that the nucleosynthetic source of this Eu pollution was ther-process, and that ther-process source occurred as the first generation of cluster stars was forming.

 
more » « less
Award ID(s):
2206379
NSF-PAR ID:
10508847
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
967
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 101
Size(s):
Article No. 101
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Understanding the assembly of our Galaxy requires us to also characterize the systems that helped build it. In this work, we accomplish this by exploring the chemistry of accreted halo stars from Gaia-Enceladus/Gaia-Sausage (GES) selected in the infrared from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) Data Release 16. We use high resolution optical spectra for 62 GES stars to measure abundances in 20 elements spanning the α, Fe-peak, light, odd-Z, and notably, the neutron-capture groups of elements to understand their trends in the context of and in contrast to the Milky Way and other stellar populations. Using these derived abundances we find that the optical and the infrared abundances agree to within 0.15 dex except for O, Co, Na, Cu, and Ce. These stars have enhanced neutron-capture abundance trends compared to the Milky Way, and their [Eu/Mg] and neutron-capture abundance ratios (e.g. [Y/Eu], [Ba/Eu], [Zr/Ba], [La/Ba], and [Nd/Ba]) point to r-process enhancement and a delay in s-process enrichment. Their [α/Fe] trend is lower than the Milky Way trend for [Fe/H] > −1.5 dex, similar to previous studies of GES stars and consistent with the picture that these stars formed in a system with a lower rate of star formation. This is further supported by their depleted abundances in Ni, Na, and Cu abundances, again, similar to previous studies of low-α stars with accreted origins.

     
    more » « less
  2. Abstract

    We present results from high-resolution (R∼ 40,000) spectroscopic observations of over 200 metal-poor stars, mostly selected from the RAVE survey, using the Southern African Large Telescope. We were able to derive stellar parameters for a total of 108 stars; an additional sample of 50 stars from this same effort was previously reported on by Rasmussen et al. Among our newly reported observations, we identify 84 very metal-poor (VMP; [Fe/H] < −2.0, 53 newly identified) stars and three extremely metal-poor (EMP; [Fe/H] < −3.0, one newly identified) stars. The elemental abundances were measured for carbon, as well as several otherα-elements (Mg, Ca, Sc, and Ti), iron-peak elements (Mn, Co, Ni, and Zn), and neutron-capture elements (Sr, Ba, and Eu). Based on these measurements, the stars are classified by their carbon and neutron-capture abundances into carbon-enhanced metal-poor (CEMP; [C/Fe] > +0.70), CEMP subclasses, and by the level of theirr-process abundances. A total of 17 are classified as CEMP stars. There are 11 CEMP-rstars (eight newly identified), one CEMP-sstar (newly identified), two possible CEMP-istars (one newly identified), and three CEMP-no stars (all newly identified) in this work. We found 11 stars (eight newly identified) that are strongly enhanced inr-process elements (r-II; [Eu/Fe] > +0.70), 38 stars (31 newly identified) that are moderately enhanced inr-process elements (r-I; +0.30 < [Eu/Fe] ≤ + 0.70), and one newly identified limited-rstar.

     
    more » « less
  3. Abstract

    We present the stellar parameters and chemical abundances of 30 elements for five stars located at large radii (3.5–10.7 times the half-light radius) in the Sextans dwarf spheroidal galaxy. We selected these stars using proper motions, radial velocities, and metallicities, and we confirm them as metal-poor members of Sextans with −3.34 ≤ [Fe/H] ≤ −2.64 using high-resolution optical spectra collected with the Magellan Inamori Kyocera Echelle spectrograph. Four of the five stars exhibit normal abundances of C (−0.34 ≤ [C/Fe] ≤ + 0.36), mild enhancement of theαelements Mg, Si, Ca, and Ti ([α/Fe] = +0.12 ± 0.03), and unremarkable abundances of Na, Al, K, Sc, V, Cr, Mn, Co, Ni, and Zn. We identify three chemical signatures previously unknown among stars in Sextans. One star exhibits large overabundances ([X/Fe] > +1.2) of C, N, O, Na, Mg, Si, and K, and large deficiencies of heavy elements ([Sr/Fe] = −2.37 ± 0.25, [Ba/Fe] = −1.45 ± 0.20, [Eu/Fe] < + 0.05), establishing it as a member of the class of carbon-enhanced metal-poor stars with no enhancement of neutron-capture elements. Three stars exhibit moderate enhancements of Eu (+0.17 ≤ [Eu/Fe] ≤ + 0.70), and the abundance ratios among 12 neutron-capture elements are indicative ofr-process nucleosynthesis. Another star is highly enhanced in Sr relative to heavier elements ([Sr/Ba] = +1.21 ± 0.25). These chemical signatures can all be attributed to massive, low-metallicity stars or their end states. Our results, the first for stars at large radius inSextans, demonstrate that these stars were formed in chemically inhomogeneous regions, such as those found in ultra-faint dwarf galaxies.

     
    more » « less
  4. null (Ed.)
    Context. NGC 6522 is a moderately metal-poor bulge globular cluster ([Fe/H]∼−1.0), and it is a well-studied representative among a number of moderately metal-poor blue horizontal branch clusters located in the bulge. The NGC 6522 abundance pattern can give hints on the earliest chemical enrichment in the central Galaxy. Aims. The aim of this study is to derive abundances of the light elements C and N; alpha elements O, Mg, Si, Ca, and Ti; odd-Z elements Na and Al; neutron-capture elements Y, Zr, Ba, La, and Nd; and the r-process element Eu. We verify if there are first- and second-generation stars: we find clear evidence of Na-Al, Na-N, and Mg-Al correlations, while we cannot identify the Na-O anti-correlation from our data. Methods. High-resolution spectra of six red giants in the bulge globular cluster NGC 6522 were obtained at the 8m VLT UT2-Kueyen telescope with both the UVES and GIRAFFE spectrographs in FLAMES+UVES configuration. In light of Gaia data, it turned out that two of them are non-members, but these were also analysed. Spectroscopic parameters were derived through the excitation and ionisation equilibrium of Fe i and Fe ii lines from UVES spectra. The abundances were obtained with spectrum synthesis. Comparisons of abundances derived from UVES and GIRAFFE spectra were carried out. Results. The present analysis combined with previous UVES results gives a mean radial velocity of vhel = −15.62±7.7 km s−1 and a r metallicity of [Fe/H] = −1.05±0.20 for NGC 6522. Mean abundances of alpha elements for the present four member stars are enhanced with [O/Fe]=+0.38, [Mg/Fe]=≈+0.28, [Si/Fe]≈+0.19, and [Ca/Fe]≈+0.13, together with the iron-peak element [Ti/Fe]≈+0.13, and the r-process element [Eu/Fe]=+0.40. The neutron-capture elements Y, Zr, Ba, and La show enhancements in the +0.08 < [Y/Fe] < +0.90, 0.11 < [Zr/Fe] < +0.50, 0.00 < [Ba/Fe] < +0.63, 0.00 < [La/Fe] < +0.45, and -0.10 < [Nd/Fe] < +0.70 ranges. We also discuss the spread in heavy-element abundances. 
    more » « less
  5. Context. NGC 6522 is a moderately metal-poor bulge globular cluster ([Fe/H] ~ −1.0), and it is a well-studied representative among a number of moderately metal-poor blue horizontal branch clusters located in the bulge. The NGC 6522 abundance pattern can give hints on the earliest chemical enrichment in the central Galaxy. Aims. The aim of this study is to derive abundances of the light elements C and N; alpha elements O, Mg, Si, Ca, and Ti; odd-Z elements Na and Al; neutron-capture elements Y, Zr, Ba, La, and Nd; and the r -process element Eu. We verify if there are first- and second-generation stars: we find clear evidence of Na–Al, Na–N, and Mg–Al correlations, while we cannot identify the Na–O anti-correlation from our data. Methods. High-resolution spectra of six red giants in the bulge globular cluster NGC 6522 were obtained at the 8m VLT UT2-Kueyen telescope with both the UVES and GIRAFFE spectrographs in FLAMES+UVES configuration. In light of Gaia data, it turned out that two of them are non-members, but these were also analysed. Spectroscopic parameters were derived through the excitation and ionisation equilibrium of Fe  I and Fe  II lines from UVES spectra. The abundances were obtained with spectrum synthesis. Comparisons of abundances derived from UVES and GIRAFFE spectra were carried out. Results. The present analysis combined with previous UVES results gives a mean radial velocity of v r hel = −15.62±7.7 km s −1 and a metallicity of [Fe/H] = −1.05 ± 0.20 for NGC 6522. Mean abundances of alpha elements for the present four member stars are enhanced with [O/Fe] = +0.38, [Mg/Fe] = ≈+0.28, [Si/Fe] ≈ +0.19, and [Ca/Fe] ≈ +0.13, together with the iron-peak element [Ti/Fe] ≈ +0.13, and the r -process element [Eu/Fe] = +0.40. The neutron-capture elements Y, Zr, Ba, and La show enhancements in the +0.08 < [Y/Fe] < +0.90, 0.11 < [Zr/Fe] < +0.50, 0.00 < [Ba/Fe] < +0.63, 0.00 < [La/Fe] < +0.45, and −0.10 < [Nd/Fe] < +0.70 ranges. We also discuss the spread in heavy-element abundances. 
    more » « less