skip to main content


Title: Effects of clouds and phase changes on fast-wave averaging: a numerical assessment
Abstract

 
more » « less
Award ID(s):
1907667
NSF-PAR ID:
10508898
Author(s) / Creator(s):
; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
920
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Edited by H. Brand, Australian Synchrotron (Ed.)
    In the article by Hulbert & Kriven (2023), there is an error in Fig. 2(b) which shows the Bragg–Brentano geometry for an X-ray diffraction (XRD) experiment. The arc denoting the angle 2θ + δ was mistakenly drawn so that it ended at the base of the specimen. However, it should extend to the incident beam. The revised Fig. 2(b) diagram is given here, shown in Fig. 1. Both the derived equation and the conclusions in the original article are unaffected by this figure correction. 
    more » « less
  2. ABSTRACT Background

    The degree of gene and sequence preservation across species provides valuable insights into the relative necessity of genes from the perspective of natural selection. Here, we developed novel interspecies metrics across 462 mammalian species, GISMO (Gene identity score of mammalian orthologs) and GISMO-mis (GISMO-missense), to quantify gene loss traversing millions of years of evolution. GISMO is a measure of gene loss across mammals weighed by evolutionary distance relative to humans, whereas GISMO-mis quantifies the ratio of missense to synonymous variants across mammalian species for a given gene.

    Rationale

    Despite large sample sizes, current human constraint metrics are still not well calibrated for short genes. Traversing over 100 million years of evolution across hundreds of mammals can identify the most essential genes and improve gene-disease association. Beyond human genetics, these metrics provide measures of gene constraint to further enable mammalian genetics research.

    Results

    Our analyses showed that both metrics are strongly correlated with measures of human gene constraint for loss-of-function, missense, and copy number dosage derived from upwards of a million human samples, which highlight the power of interspecies constraint. Importantly, neither GISMO nor GISMO-mis are strongly correlated with coding sequence length. Therefore both metrics can identify novel constrained genes that were too small for existing human constraint metrics to capture. We also found that GISMO scores capture rare variant association signals across a range of phenotypes associated with decreased fecundity, such as schizophrenia, autism, and neurodevelopmental disorders. Moreover, common variant heritability of disease traits are highly enriched in the most constrained deciles of both metrics, further underscoring the biological relevance of these metrics in identifying functionally important genes. We further showed that both scores have the lowest duplication and deletion rate in the most constrained deciles for copy number variants in the UK Biobank, suggesting that it may be an important metric for dosage sensitivity. We additionally demonstrate that GISMO can improve prioritization of recessive disorder genes and captures homozygous selection.

    Conclusions

    Overall, we demonstrate that the most constrained genes for gene loss and missense variation capture the largest fraction of heritability, GISMO can help prioritize recessive disorder genes, and identify the most conserved genes across the mammalian tree.

     
    more » « less
  3. Resonant tunneling diodes (RTDs) have come full-circle in the past 10 years after their demonstration in the early 1990s as the fastest room-temperature semiconductor oscillator, displaying experimental results up to 712 GHz and fmax values exceeding 1.0 THz [1]. Now the RTD is once again the preeminent electronic oscillator above 1.0 THz and is being implemented as a coherent source [2] and a self-oscillating mixer [3], amongst other applications. This paper concerns RTD electroluminescence – an effect that has been studied very little in the past 30+ years of RTD development, and not at room temperature. We present experiments and modeling of an n-type In0.53Ga0.47As/AlAs double-barrier RTD operating as a cross-gap light emitter at ~300K. The MBE-growth stack is shown in Fig. 1(a). A 15-μm-diam-mesa device was defined by standard planar processing including a top annular ohmic contact with a 5-μm-diam pinhole in the center to couple out enough of the internal emission for accurate free-space power measurements [4]. The emission spectra have the behavior displayed in Fig. 1(b), parameterized by bias voltage (VB). The long wavelength emission edge is at  = 1684 nm - close to the In0.53Ga0.47As bandgap energy of Ug ≈ 0.75 eV at 300 K. The spectral peaks for VB = 2.8 and 3.0 V both occur around  = 1550 nm (h = 0.75 eV), so blue-shifted relative to the peak of the “ideal”, bulk InGaAs emission spectrum shown in Fig. 1(b) [5]. These results are consistent with the model displayed in Fig. 1(c), whereby the broad emission peak is attributed to the radiative recombination between electrons accumulated on the emitter side, and holes generated on the emitter side by interband tunneling with current density Jinter. The blue-shifted main peak is attributed to the quantum-size effect on the emitter side, which creates a radiative recombination rate RN,2 comparable to the band-edge cross-gap rate RN,1. Further support for this model is provided by the shorter wavelength and weaker emission peak shown in Fig. 1(b) around = 1148 nm. Our quantum mechanical calculations attribute this to radiative recombination RR,3 in the RTD quantum well between the electron ground-state level E1,e, and the hole level E1,h. To further test the model and estimate quantum efficiencies, we conducted optical power measurements using a large-area Ge photodiode located ≈3 mm away from the RTD pinhole, and having spectral response between 800 and 1800 nm with a peak responsivity of ≈0.85 A/W at  =1550 nm. Simultaneous I-V and L-V plots were obtained and are plotted in Fig. 2(a) with positive bias on the top contact (emitter on the bottom). The I-V curve displays a pronounced NDR region having a current peak-to-valley current ratio of 10.7 (typical for In0.53Ga0.47As RTDs). The external quantum efficiency (EQE) was calculated from EQE = e∙IP/(∙IE∙h) where IP is the photodiode dc current and IE the RTD current. The plot of EQE is shown in Fig. 2(b) where we see a very rapid rise with VB, but a maximum value (at VB= 3.0 V) of only ≈2×10-5. To extract the internal quantum efficiency (IQE), we use the expression EQE= c ∙i ∙r ≡ c∙IQE where ci, and r are the optical-coupling, electrical-injection, and radiative recombination efficiencies, respectively [6]. Our separate optical calculations yield c≈3.4×10-4 (limited primarily by the small pinhole) from which we obtain the curve of IQE plotted in Fig. 2(b) (right-hand scale). The maximum value of IQE (again at VB = 3.0 V) is 6.0%. From the implicit definition of IQE in terms of i and r given above, and the fact that the recombination efficiency in In0.53Ga0.47As is likely limited by Auger scattering, this result for IQE suggests that i might be significantly high. To estimate i, we have used the experimental total current of Fig. 2(a), the Kane two-band model of interband tunneling [7] computed in conjunction with a solution to Poisson’s equation across the entire structure, and a rate-equation model of Auger recombination on the emitter side [6] assuming a free-electron density of 2×1018 cm3. We focus on the high-bias regime above VB = 2.5 V of Fig. 2(a) where most of the interband tunneling should occur in the depletion region on the collector side [Jinter,2 in Fig. 1(c)]. And because of the high-quality of the InGaAs/AlAs heterostructure (very few traps or deep levels), most of the holes should reach the emitter side by some combination of drift, diffusion, and tunneling through the valence-band double barriers (Type-I offset) between InGaAs and AlAs. The computed interband current density Jinter is shown in Fig. 3(a) along with the total current density Jtot. At the maximum Jinter (at VB=3.0 V) of 7.4×102 A/cm2, we get i = Jinter/Jtot = 0.18, which is surprisingly high considering there is no p-type doping in the device. When combined with the Auger-limited r of 0.41 and c ≈ 3.4×10-4, we find a model value of IQE = 7.4% in good agreement with experiment. This leads to the model values for EQE plotted in Fig. 2(b) - also in good agreement with experiment. Finally, we address the high Jinter and consider a possible universal nature of the light-emission mechanism. Fig. 3(b) shows the tunneling probability T according to the Kane two-band model in the three materials, In0.53Ga0.47As, GaAs, and GaN, following our observation of a similar electroluminescence mechanism in GaN/AlN RTDs (due to strong polarization field of wurtzite structures) [8]. The expression is Tinter = (2/9)∙exp[(-2 ∙Ug 2 ∙me)/(2h∙P∙E)], where Ug is the bandgap energy, P is the valence-to-conduction-band momentum matrix element, and E is the electric field. Values for the highest calculated internal E fields for the InGaAs and GaN are also shown, indicating that Tinter in those structures approaches values of ~10-5. As shown, a GaAs RTD would require an internal field of ~6×105 V/cm, which is rarely realized in standard GaAs RTDs, perhaps explaining why there have been few if any reports of room-temperature electroluminescence in the GaAs devices. [1] E.R. Brown,et al., Appl. Phys. Lett., vol. 58, 2291, 1991. [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [2] M. Feiginov et al., Appl. Phys. Lett., 99, 233506, 2011. [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [3] Y. Nishida et al., Nature Sci. Reports, 9, 18125, 2019. [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [4] P. Fakhimi, et al., 2019 DRC Conference Digest. [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). 
    more » « less
  4. In-memory-computing (IMC) SRAM architecture has gained significant attention as it achieves high energy efficiency for computing a convolutional neural network (CNN) model [1]. Recent works investigated the use of analog-mixed-signal (AMS) hardware for high area and energy efficiency [2], [3]. However, AMS hardware output is well known to be susceptible to process, voltage, and temperature (PVT) variations, limiting the computing precision and ultimately the inference accuracy of a CNN. We reconfirmed, through the simulation of a capacitor-based IMC SRAM macro that computes a 256D binary dot product, that the AMS computing hardware has a significant root-mean-square error (RMSE) of 22.5% across the worst-case voltage, temperature (Fig. 16.1.1 top left) and 3-sigma process variations (Fig. 16.1.1 top right). On the other hand, we can implement an IMC SRAM macro using robust digital logic [4], which can virtually eliminate the variability issue (Fig. 16.1.1 top). However, digital circuits require more devices than AMS counterparts (e.g., 28 transistors for a mirror full adder [FA]). As a result, a recent digital IMC SRAM shows a lower area efficiency of 6368F2/b (22nm, 4b/4b weight/activation) [5] than the AMS counterpart (1170F2/b, 65nm, 1b/1b) [3]. In light of this, we aim to adopt approximate arithmetic hardware to improve area and power efficiency and present two digital IMC macros (DIMC) with different levels of approximation (Fig. 16.1.1 bottom left). Also, we propose an approximation-aware training algorithm and a number format to minimize inference accuracy degradation induced by approximate hardware (Fig. 16.1.1 bottom right). We prototyped a 28nm test chip: for a 1b/1b CNN model for CIFAR-10 and across 0.5-to-1.1V supply, the DIMC with double-approximate hardware (DIMC-D) achieves 2569F2/b, 932-2219TOPS/W, 475-20032GOPS, and 86.96% accuracy, while for a 4b/1b CNN model, the DIMC with the single-approximate hardware (DIMC-S) achieves 3814F2/b, 458-990TOPS/W 
    more » « less
  5. Three (3) items of errata are submitted for our recently published paper [Opt. Express28,36505(2020)10.1364/OE.405566]. One is a clarifying extension to the Fig. 3 caption. Two are typographical corrections. The scientific results and conclusions are unaffected.

     
    more » « less