skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydrothermal Estuaries: What Sets the Fe Flux from Submarine Venting to the Oceans?
One of the most exciting results from the GEOTRACES program’s zonal and meridional sections has been the recognition that hydrothermally sourced Fe may persist long enough to be upwelled along shoaling isopycnals and act as an essential micronutrient, stimulating primary productivity at high latitudes. In Aug-Sep 2023 our team used a combination of predictive plume dispersion modelling, real-time current meter data from the Ocean Networks Canada observatory, and in situ sensing and sampling from the AUV Sentry to guide biogeochemical sampling of dispersing hydrothermal plumes above the Juan de Fuca Ridge. A key motivation for this study was to investigate what sets the export flux of dissolved Fe and Mn away from ridge-axis venting. We specifically targeted hydrothermal vents in the NE Pacific for this study, at the far end of the thermohaline circulation, to maximize predicted Fe oxidation times within the dispersing plume and, hence, optimize our ability to reveal distinct processes that may contribute to regulating Fe flux as a function of time and distance down-plume. We also targeted an overlooked gap in the length-scale over which hydrothermal processes may regulate export fluxes, between the ≤1km range typical of submersible-based investigations and the ~100km spacing for GEOTRACES Section stations. Over 3 weeks on station we were able to use the Sentry AUV equipped with an in situ oxidation-reduction potential (ORP) sensor, an optical backscatter sensor (OBS) and two methane sensors (METS, SAGE) to track predicted plume dispersion trajectories and guide a telescopically-expanding program of water column sampling for dissolved, soluble, colloidal and particulate species of Fe, Mn and other metals, at <0.1, 0.25, 0.50, 1, 2, 5 and 10km down-plume from the High Rise and Main Endeavour vent-sites. We will present results from Sentry sensor data revealing length scales over which hydrothermal plume signatures attenuated, together with complementary TEI data, all set within the context of our dispersing plume model. Our approach will ultimately allow us to assign both effective distances down-plume from source, for each sample collected, and model dispersion ages. This will provide insights into both the processes active within a dispersing hydrothermal plume and the rates at which those processes occur.  more » « less
Award ID(s):
1851007
PAR ID:
10508961
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
AGU Oceansciences
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep-sea hydrothermal vents inject dissolved and particulate metals, dissolved gasses, and biological matter into the water column, creating plumes several hundred meters above the seafloor that can be traced thousands of kilometers. To understand the impact of these plumes, rosettes equipped with sample bottles and in situ instruments, e.g., for turbidity, oxidation-reduction potential, and temperature, have been key tools for collecting water column fluid for informative ex situ analysis. However, deploying rosettes strategically in distal (>1km) plume-derived fluids is difficult when plume material is entrained rapidly with background water and transported by complicated bathymetric, internal, and/or tidal currents. This problem is exacerbated when the controlling dynamics are also poorly constrained (e.g., no persistent monitoring, few historical data) and data collected while in the field to estimate or compensate for these dynamics are only available to be analyzed hours or days following an asset deployment. Autonomous underwater vehicles (AUVs) equipped with equivalent in situ instruments to rosettes excel at exploration missions and creating highly-resolved maps at different spatial scales. Utilization of AUVs for hydrothermal plume charting and strategic sampling with rosettes is at a techno-scientific frontier that requires new data transmission and visualization interfaces for supporting real-time evidence-based operational decisions made at sea. We formulated a method for monitoring in situ water properties while an AUV is underway that (1) builds situational awareness of deep fluid mass distributions, (2) allows scientists-in-the-loop to rapidly identify fluid distribution patterns that inform adaptations to AUV missions or deployments of other assets, like rosettes, for targeted sample collection, and (3) supports robust formulation of working hypotheses of plume dynamics for in-field investigation. We will present a description of the method with preliminary results from cruise AT50-15 (Juan de Fuca Ridge, 2023) using AUV Sentry and discuss how supervised autonomy will improve ocean robotics for future science missions. 
    more » « less
  2. The process of seeking, sampling, and characterizing deep hydrothermal systems is benefited by the use of autonomous underwater vehicles (AUVs) equipped with in situ sensors. Traditional AUV operations require multiple deployments with manual data analysis by ship-board scientists. Development of advanced autonomous methods that analyze in situ data in real-time and allow the vehicle itself to make decisions would improve the efficiency of operations and enable new frontiers in exploration at hydrothermal systems on Ocean Worlds. Adaptive robotic decision making is facilitated by computational models of hydrothermal systems and selected in situ sensors used to refine and validate these predictions. Improving autonomous missions requires better models, and thus an understanding of how different sensors respond to hydrothermally altered seawater. During cruise AT50-15 (Juan De Fuca Ridge, 2023), we performed surveys of the hydrothermal plumes at the Endeavour Segment with AUV Sentry to investigate the utility of in situ sensors measuring tracers such as oxidation-reduction potential, optical backscatter, methane abundance, conductivity, and temperature, for building working models of plume dynamics. We investigated length scales of under 1 km to 5 km with a focus on reoccupying locations over varying time scales. Persistent deep current data were available through the Ocean Networks Canada mooring array. Using these datasets, we investigate two questions: (1) how reliably and at what length scales can real-time current information be used to predict the location and source of a hydrothermal plume? (2) How does the relative age (hence, biogeochemical maturation) of the hydrothermal plume fluid affect the response of different in situ sensors? These results will be used to inform the development of autonomous plume detection algorithms that use real-time, in situ data with the purpose of improving AUV exploration of hydrothermal plumes on Earth and other Ocean Worlds. 
    more » « less
  3. Abstract. Supply of iron (Fe) to the surface ocean supports primary productivity, and while hydrothermal input of Fe to the deep ocean is knownto be extensive it remains poorly constrained. Global estimates of hydrothermal Fe supply rely on using dissolved Fe (dFe) toexcess He (xs3He) ratios to upscale fluxes, but observational constraints on dFe/xs3He may be sensitive toassumptions linked to sampling and interpolation. We examined the variability in dFe/xs3He using two methods of estimation, forfour vent sites with different geochemistry along the Mid-Atlantic Ridge. At both Rainbow and TAG, the plume was sampled repeatedly and the range ofdFe/xs3He was 4 to 63 and 4 to 87 nmol:fmol, respectively, primarily due to differences in plume age. To account for backgroundxs3He and shifting plume position, we calibrated He values using contemporaneous dissolved Mn (dMn). Applying thisapproach more widely, we found dFe/xs3He ratios of 12, 4–8, 4–44, and 4–86 nmol fmol−1 for the Menez Gwen, LuckyStrike, Rainbow, and TAG hydrothermal vent sites, respectively. Differences in plume dFe/xs3He across sites were not simplyrelated to the vent endmember Fe and He fluxes. Within 40 km of the vents, the dFe/xs3He ratios decreased to3–38 nmol fmol−1, due to the precipitation and subsequent settling of particulates. The ratio of colloidal Fe to dFe wasconsistently higher (0.67–0.97) than the deep N. Atlantic (0.5) throughout both the TAG and Rainbow plumes, indicative of Fe exchangebetween dissolved and particulate phases. Our comparison of TAG and Rainbow shows there is a limit to the amount of hydrothermal Fe releasedfrom vents that can form colloids in the rising plume. Higher particle loading will enhance the longevity of the Rainbow hydrothermal plume withinthe deep ocean assuming particles undergo continual dissolution/disaggregation. Future studies examining the length of plume pathways required toescape the ridge valley will be important in determining Fe supply from slow spreading mid-ocean ridges to the deep ocean, along with thefrequency of ultramafic sites such as Rainbow. Resolving the ridge valley bathymetry and accounting for variability in vent sources in globalbiogeochemical models will be key to further constraining the hydrothermal Fe flux. 
    more » « less
  4. A multiscale numerical framework has been developed to investigate the dispersion of deep-sea hydrothermal plumes that originate from the Endeavour Segment of the Juan de Fuca Ridge located in the Northeast Pacific. The analysis of simulation outputs presented in this study provides insights into the influences of tidal forcing and the buoyancy flux associated with hydrothermal venting on ocean circulation and plume dispersion in the presence of pronounced seafloor topography. The results indicate that tidal forcing drives anti-cyclonic circulation near the ridge-axis, while hydrothermal venting induces cyclonic circulation around vent fields within the axial rift valley. Tidal forcing has a notable impact on plume dispersion, particularly near the large topographic features to the north of the Endeavour Segment. Furthermore, plume dispersion exhibits notable inter-annual variability, with a northbound trajectory in 2016 and a southbound trajectory in 2021. The study also reveals that both buoyancy fluxes and tidal forcing enhance the mixing of hydrothermal plumes with ambient seawater. 
    more » « less
  5. Manganese (Mn) is an essential element for life. Although its concentration is at (sub)nanomolar levels throughout the ocean, it affects the oxygen concentration of the ocean because it is central to the photosynthetic formation of dioxygen, O2, in photosystem center II. Mn inputs into the ocean are from atmospheric transport of particles and their dissolution to form dissolved Mn, and from the flux of dissolved Mn from rivers, sediments and hydrothermal vents. The main removal mechanism is transport of particulate Mn from dust and organic matter to the sediments. The environmental chemistry of manganese centers on its +2, +3 and +4 oxidation states. Most recent data show that Mn(II) is dissolved, that Mn(IV) is particulate MnO2, and that Mn(III) can be particulate or dissolved when bound to organic complexes [denoted as Mn(III)-L]. Mn(II) is oxidized primarily by microbial processes whereas MnO2 is reduced by abiotic and biotic processes. Photochemical processing aids redox cycling in surface waters. In suboxic zones, which are defined as areas with dissolved O2 concentrations below 3 M, both oxidation and reduction processes can occur but usually at different depths. In suboxic zones, dissolved Mn is also released from organic matter during its decomposition and from MnO2 reduction. 
    more » « less