skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Limited Evidence for a Microbial Signal in Ground‐Level Smoke Plumes
Abstract Recent studies have suggested that microbial aerosolization in wildfire smoke is an understudied source of microbes to the atmosphere. Wildfire smoke can travel thousands of kilometers from its source with the potential to facilitate the transport of microbes, including microbes that can have far‐reaching impacts on human or ecosystem health. However, the relevance of longer‐range detection of microbes in smoke plumes remains undetermined, as previous studies have mainly focused on analyses of bioaerosols collected adjacent to or directly above wildfires. Therefore, we investigated whether wildfire smoke estimated to originate >30 km from different wildfire sources would contain detectable levels of bacterial and fungal DNA at ground level, hypothesizing that smoke‐impacted air would harbor greater amounts and a distinct composition of microbes as compared to ambient air. We used cultivation‐independent approaches to analyze 150 filters collected over time from three sampling locations in the western United States, of which 34 filters were determined to capture wildfire smoke events. Contrary to our hypothesis, smoke‐impacted samples harbored lower amounts of microbial DNA. Likewise, there was a limited signal in the composition of the microbial assemblages detected in smoke‐affected samples as compared to ambient air, but we did find that changes in humidity were associated with temporal variation in the composition of the bacterial and fungal bioaerosols. With our study design, we were unable to detect a robust and distinct microbial signal in ground‐level smoke originating from distant wildfires.  more » « less
Award ID(s):
2120117
PAR ID:
10509015
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
129
Issue:
4
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wildfire smoke, particularly particulate matter less than 2.5 microns (PM2.5), represents a major source of air pollution and a growing public health problem. PM2.5 is a general term used for any particulate < 2.5 µm; however, a wide variety of particulates with different physical and chemical properties can be formed in this size range. The health impacts of PMs are controlled by their size. Unlike larger particulates, which only enter the respiratory tract, fine PMs (<0.1 µm) can also enter the bloodstream and even pass through the blood-brain barrier. The health risks due to exposure to PM can be different for various PM phases with different physical properties, which is poorly understood. We collected wildfire smoke from more than 10 major wildfires in the Western US using active air samplers that separate particles in different size ranges (>2.5 µm - <0.25 µm). Particles were collected on filters, which are pre-weighted and loaded into the impactor. The filters were weighted and compared with the pre-weight values to calculate the mass of particles collected at each size range. Our results revealed that for all the smoke from varied wildfires, the mass of particles increased with decreasing size, with the majority (more than 50%) being less than 0.25 μm. In addition, the PM2.5 total concentration was recorded using an air quality monitor and compared to the particle size distribution in different smoke samples. The results showed that as the overall concentration of wildfire smoke decreases, the fraction of particles smaller than 0.250 microns increases even more. This suggests that these ultrafine particles not only make up the majority of PM in wildfire smoke but are also more persistent in the atmosphere, even when the total PM concentration is low. Our findings highlight the magnitude of health risks posed by PM and underscore the urgent need for effective solutions to reduce respiratory exposure in affected communities. 
    more » « less
  2. There is a knowledge gap surrounding how drought and wildfire, two increasingly frequent disturbances, will alter soil fungal communities. Moreover, studies that directly compare ambient and drought-treated soil fungal communities in the context of wildfire are exceptionally scarce. We assessed the response and recovery of soil fungal communities and functional guilds in two sites – a grassland and a coastal sage shrubland – after a severe wildfire burned a long-term drought experiment. We collected soil samples at four collection dates over an eight-month period after wildfire and amplified fungal DNA. We predicted that fungal communities within the drought and ambient treatments would differ significantly across collection dates owing to differing responses to post-wildfire conditions. Richness was stable across collection dates, regardless of precipitation treatment, in both sites. Differences between treatments were significant at every collection date with respect to taxonomical community composition. Differences in community composition between collection dates within each treatment were also significant. Additionally, the monotonic trends of drought and ambient communities over time differed in strength and direction. Differences in shrubland functional guild composition across collection dates and contrasting trends suggest a drought-dependent shift after the fire. Overall, we conclude that drought mediates how soil fungal communities respond after a wildfire in the long term, however drought effects may differ across ecosystems. 
    more » « less
  3. Abstract Smoke from wildland fires contains more diverse, viable microbes than typical ambient air, yet little is known about the sources and sinks of smoke‐borne microorganisms. Data from molecular‐based surveys suggest that smoke‐borne microorganisms originate from material associated with the vegetation and underlying soils that becomes aerosolized during combustion, however, the sources of microbes in smoke have not yet been experimentally assessed. To elucidate this link, we studied high‐intensity forest fires in the Fishlake National Forest, Utah, USA and applied source‐sink modeling to assemblages of 16S ribosomal RNA (rRNA) gene sequences recovered from samples of smoke, vegetation, and soil. Our results suggest that 70% of the bacterial taxa in smoke originated from the local aspen (Populus tremuloides) (33%) and soil (37%) communities. In comparison, 42% of bacteria in air sampled prior to the fires could be attributed to these terrestrial sources. When the bacterial assemblages in smoke were modeled as sources to the local communities, they contributed an average of 25% to the terrestrial sinks versus an estimated contribution of <4% from ambient air. Our results provide support for the role of wildland fire in bacterial dispersal and the working hypothesis that smoke is an environmental reservoir of microbes for receiving ecosystems. 
    more » « less
  4. The encroachment of woody shrubs into grasslands is a phenomenon that has been occurring in the Chihuahuan Desert since the 1800s. Research shows that extensive livestock grazing and increased drought levels have acted as the main drivers of the grassland-to-shrubland transition. Very few studies have considered the impacts of such vegetation changes on microbial communities. Microbes play important ecosystem roles in nutrient cycling and carbon sequestration but also have the potential to act as pathogens. As the role of microbes in ecosystems is so important, it is crucial to understand the potential impacts of shrub encroachment on microbes and vice versa. Additionally, dryland microbes in general are understudied and as drylands cover over 40% of Earth’s land, understanding these microbes is of great ecological importance. The goal of this study was to assess microbial communities in shrub encroached systems in the Chihuahuan Desert to improve understanding of the ecological impacts of encroachment and increase general knowledge of dryland microbes. To conduct this study, soil samples were collected from sites dominated by black grama grass (Bouteloua eriopoda), sites dominated by honey mesquite shrubs (Prosopis glandulosa), and transition sites with both black grama and mesquite. DNA from soil samples was sequenced for bacteria (16S) and fungi (ITS2). Soil sampling was conducted through five sampling periods across a 10-month range to assess any potential seasonal variation in the microbial communities. In addition to DNA sequencing, microbial biomass and other environmental variables were collected. Statistical analyses were conducted to assess potential differences in microbial communities between vegetation types and seasons. Analyses included assessments of alpha and beta diversity, co-occurrence networks, and differential abundance analyses. Results show that there are significant changes in the microbial communities across vegetation types and seasons. Unique fungal and bacterial communities were identified in association with the different vegetation types, demonstrating that differences in vegetation influence microbial communities. Additionally, findings show that microbial communities are strongly impacted by seasons, showing decreases in biomass and changes to community composition in warm summer months compared to cooler months. Additionally, results show higher proportions of fungal pathogens in grass sites compared to other sites. Overall, this study demonstrates that microbial communities are influenced by shrub encroachment. As dryland microbial communities are often understudied, these findings can provide valuable insight into the ecology of dryland microbes and shrub-encroached systems. 
    more » « less
  5. Abstract Floral nectar is frequently colonised by microbes. However, nectar microbial communities are typically species‐poor and dominated by few cosmopolitan genera. One hypothesis is that nectar constituents may act as environmental filters. We tested how five non‐sugar nectar compounds as well as elevated sugar impacted the growth of 12 fungal and bacterial species isolated from nectar, pollinators, and the environment. We hypothesised that nectar isolated microbes would have the least growth suppression. Additionally, to test if nectar compounds could affect the outcome of competition between microbes, we grew a subset of microbes in co‐culture across a subset of treatments. We found that some compounds such as H2O2suppressed microbial growth across many but not all microbes tested. Other compounds were more specialised in the microbes they impacted. As hypothesised, the nectar specialist yeastMetschnikowia reukaufiiwas unaffected by most nectar compounds assayed. However, many non‐nectar specialist microbes remained unaffected by nectar compounds thought to reduce microbial growth. Our results show that nectar chemistry can influence microbial communities but that microbe‐specific responses to nectar compounds are common. Nectar chemistry also affected the outcome of species interactions among microbial taxa, suggesting that non‐sugar compounds can affect microbial community assembly in flowers. 
    more » « less