Abstract Colorectal cancer (CRC) cells display remarkable adaptability, orchestrating metabolic changes that confer growth advantages, pro‐tumor microenvironment, and therapeutic resistance. One such metabolic change occurs in glutamine metabolism. Colorectal tumors with high glutaminase (GLS) expression exhibited reduced T cell infiltration and cytotoxicity, leading to poor clinical outcomes. However, depletion of GLS in CRC cells has minimal effect on tumor growth in immunocompromised mice. By contrast, remarkable inhibition of tumor growth is observed in immunocompetent mice when GLS is knocked down. It is found that GLS knockdown in CRC cells enhanced the cytotoxicity of tumor‐specific T cells. Furthermore, the single‐cell flux estimation analysis (scFEA) of glutamine metabolism revealed that glutamate‐to‐glutathione (Glu‐GSH) flux, downstream of GLS, rather than Glu‐to‐2‐oxoglutarate flux plays a key role in regulating the immune response of CRC cells in the tumor. Mechanistically, inhibition of the Glu‐GSH flux activated reactive oxygen species (ROS)‐related signaling pathways in tumor cells, thereby increasing the tumor immunogenicity by promoting the activity of the immunoproteasome. The combinatorial therapy of Glu‐GSH flux inhibitor and anti‐PD‐1 antibody exhibited a superior tumor growth inhibitory effect compared to either monotherapy. Taken together, the study provides the first evidence pointing to Glu‐GSH flux as a potential therapeutic target for CRC immunotherapy. 
                        more » 
                        « less   
                    
                            
                            Enhancing Anti-Tumorigenic Efficacy of Eugenol in Human Colon Cancer Cells Using Enzyme-Responsive Nanoparticles
                        
                    
    
            This study is focused on the selective delivery and release of the plant-based anticancer compound eugenol (EUG) in colorectal cancer cells (CRC). EUG is an apoptotic and anti-growth compound in diverse malignant tumors, including CRC. However, EUG’s rapid metabolization, excretion, and side effects on normal cells at higher dosages are major limitations of its therapeutic potential. To address this problem, we developed a “smart” enzyme-responsive nanoparticle (eNP) loaded with EUG that exposes tumors to a high level of the drug while keeping its concentration low among healthy cells. We demonstrated that EUG induces apoptosis in CRC cells irrespective of their grades in a dose- and time-dependent manner. EUG significantly decreases cancer cell migration, invasion, and the population of colon cancer stem cells, which are key players in tumor metastasis and drug resistance. The “smart” eNPs–EUG show a high affinity to cancer cells with rapid internalization with no affinity toward normal colon epithelial cells. NPs–EUG enhanced the therapeutic efficacy of EUG measured by a cell viability assay and showed no toxicity effect on normal cells. The development of eNPs–EUG is a promising strategy for innovative anti-metastatic therapeutics. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2150083
- PAR ID:
- 10509336
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Cancers
- Volume:
- 15
- Issue:
- 4
- ISSN:
- 2072-6694
- Page Range / eLocation ID:
- 1145
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Background: Colorectal cancer (CRC) is a term that refers to the combination of colon and rectal cancer as they are being treated as a single tumor. In CRC, 72% of tumors are colon cancer, while the other 28% represent rectal cancer. CRC is a multifactorial disease caused by both genetic and epigenetic changes in the colon mucosal cells, affecting the oncogenes, DNA repair genes, and tumor suppressor genes. Currently, two DNA methylation-based biomarkers for CRC have received FDA approval: SEPT9, used in blood-based screening tests, and a combination of NDRG4 and BMP3 for stool-based tests. Although DNA methylation biomarkers have been explored in colorectal cancer (CRC), the identification of robust and clinically valuable biomarkers remains a challenge, particularly for early-stage detection and precancerous lesions. Patients often receive diagnoses at the locally advanced stage, which limits the potential utility of current biomarkers in clinical settings. Methods: The datasets used in this study were retrieved from the GEO database, specifically GSE75548 and GSE75546 for rectal cancer and GSE50760 and GSE101764 for colon cancer, summing up to a total of 130 paired samples. These datasets represent expression profiling by array, methylation profiling by genome tiling array, and expression profiling by high-throughput sequencing and include rectal and colon cancer samples paired with adjacent normal tissue samples. Differential analysis was used to identify differentially methylated CPG sites (DMCs) and identify differentially expressed genes (DEGs). Results: From the integration of DMCs with DEGs in colorectal cancer, we identified 150 candidates for methylation-regulated genes (MRGs) with two genes common across all cohorts (GNG7 and PDX1) highlighted as candidate biomarkers in CRC. The functional enrichment analysis and protein–protein interactions (PPIs) identified relevant pathways involved in CRC, including the Wnt signaling pathway, extracellular matrix (ECM) organization, among other enriched pathways. Conclusions: Our findings show the strength of our in silco computational approach in jointly identifying methylation-regulated biomarkers for colon cancer and highlight several genes and pathways as biomarker candidates for further investigations.more » « less
- 
            Abstract A high-throughput drug screen revealed that veratridine (VTD), a natural plant alkaloid, induces expression of the anti-cancer protein UBXN2A in colon cancer cells. UBXN2A suppresses mortalin, a heat shock protein, with dominant roles in cancer development including epithelial–mesenchymal transition (EMT), cancer cell stemness, drug resistance, and apoptosis. VTD-dependent expression of UBXN2A leads to the deactivation of mortalin in colon cancer cells, making VTD a potential targeted therapy in malignant tumors with high levels of mortalin. VTD was used clinically for the treatment of hypertension in decades past. However, the discovery of newer antihypertensive drugs and concerns over potential neuro- and cardiotoxicity ended the use of VTD for this purpose. The current study aims to determine the safety and efficacy of VTD at doses sufficient to induce UBXN2A expression in a mouse model. A set of flow-cytometry experiments confirmed that VTD induces both early and late apoptosis in a dose-dependent manner. In vivo intraperitoneal (IP) administration of VTD at 0.1 mg/kg every other day (QOD) for 4 weeks effectively induced expression of UBXN2A in the small and large intestines of mice. Liquid chromatography–tandem mass spectrometry (LC–MS/MS) assays on tissues collected from VTD-treated animals demonstrated VTD concentrations in the low pg/mg range. To address concerns regarding neuro- and cardiotoxicity, a comprehensive set of behavioral and cardiovascular assessments performed on C57BL/6NHsd mice revealed that VTD generates no detectable neurotoxicity or cardiotoxicity in animals receiving 0.1 mg/kg VTD QOD for 30 days. Finally, mouse xenograft experiments in athymic nude mice showed that VTD can suppress tumor growth. The main causes for the failure of experimental oncologic drug candidates are lack of sufficient safety and efficacy. The results achieved in this study support the potential utility of VTD as a safe and efficacious anti-cancer molecule.more » « less
- 
            Three-dimensional (3D) disease models have garnered widespread interest for use in later stages of the drug discovery process, such as preclinical efficacy and toxicology studies, due to their pathophysiologically relevant properties. However, there is a need and opportunity for 3D cancer models to be used earlier in the drug screening process. To meet this need, the 3D models must strike a balance between throughput, which includes scalability and uniformity, and physiological relevance, such as the ability to modulate key attribute of the tumor microenvironment. Here we report the creation of 3D colorectal cancer (CRC) tissue models, referred to as VivoSpheres, and demonstrated their relevance to cancer drug screening. The VivoSphere production platform couples tissue engineering toolkits with microfluidics, enabling the scalable production of engineered cancer microspheres. The model supports the long-term maintenance of the cancer cell phenotype. In a preliminary study, we were able to generate more physiologically relevant drug responses. We formed CRC VivoSpheres by encapsulating HT-29 CRC cells within poly(ethylene glycol)-fibrinogen hydrogel microspheres using our previously developed microfluidic platform. CRC VivoSpheres were rapidly produced with high cell densities (20 × 106 cells/ml) and high uniformity on day 0 with a coefficient of variation (COV) < 7%. This high uniformity was maintained for 15 days (COV ≤ 10%), which is critical for long-term dose studies. The cells maintained high viability and showed high proliferative capability with a significant increase in colony size and expression of Ki67 up to day 29. The encapsulated cells maintained the CRC phenotype over time with the expression of CD44 (cancer stem cell marker) and CK20 (CRC marker). After establishing shipping conditions that maintained cell viability for remote use, the HT-29 VivoSpheres were shipped to the oncology team at Southern Research for drug testing. The CRC VivoSpheres were treated with DMSO, GANT61, and SRI-38832, the latter two of which are GLI1 inhibitors. Phase contrast images and western blot were used to assess the response of CRC VivoSpheres to the treatments. Oncogenic GLI1 transcription activity and NBS1 overexpression have been found to contribute to chemotherapeutic resistance, negating the anti-tumor effects of 5-fluorouracil. While 2D cultured HT-29s responded to treatment with GANT61, HT-29 VivoSpheres continued to express NBS1 following GANT1 treatment, but downregulated NBS1 in response to the GLI1 inhibitor SRI-38832, which is the same response Southern Research has seen in in vivo tumor models. In conclusion, we have developed tissue-engineered 3D CRC models that hold promise for use in drug screening. These models have demonstrated an initial capability to reproduce the CRC phenotype and mimic in vivo drug response.more » « less
- 
            Patient derived organoids have emerged as robust preclinical models for screening anti-cancer therapeutics. Current 2D culturing methods do not provide physiological responses to therapeutics, therefore 3D models are being developed to better reproduce physiological responses. 3D culturing however often requires large initial cell populations and one week to one month to grow tumors ready for therapeutic testing. As a solution a 3D culturing system has been developed capable of producing physiologically relevant tumors in an expedited fashion while only requiring a small number of initial cancer cells. A bi-layer microfluidic system capable of facilitating active convective nutrient supply to populations of cancer cells facilitates expedited growth of cancer cells when starting with populations as small as 8 cells. The system has been shown to function well with adherent and non-adherent cell types by expediting cell growth by a factor ranging from 1.27 to 4.76 greater than growth under static conditions. Utilizing such an approach has enable to formation of tumors ready for therapeutic screening within 3 days and the ability to perform therapeutic screening within the microfluidic system is demonstrated. A mathematical model has been developed which allows for adjustments to be made to the dynamic delivery of nutrients in order to efficiently use culture media without excessive waste. We believe this work to be the first attempt to grow cancers in an expedited fashion utilizing only a convective nutrient supply within a microfluidic system which also facilitates on-device therapeutic screening. The developed microfluidic system and cancer growth method have the potential to offer improved drug screening for patients in clinical settings.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    